
Real-Time Workshop® Embedded Coder™ 5
Getting Started Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Workshop® Embedded Coder™ Getting Started Guide

© COPYRIGHT 2007–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2007 First printing New for Version 5.0 (Release 2007b)
March 2008 Online only Revised for Version 5.1 (Release 2008a)
October 2008 Online only Revised for Version 5.2 (Release 2008b)
March 2009 Online only Revised for Version 5.3 (Release 2009a)
September 2009 Online only Revised for Version 5.4 (Release 2009b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started with Real-Time Workshop®
Embedded Coder Software

1
What You Need to Know to Use Real-Time Workshop®

Embedded Coder . 1-2

What You Can Accomplish Using Real-Time Workshop
Technology . 1-3

How the Technology Can Fit Into Your Development
Process . 1-6
Tools for Algorithm Development . 1-6
Target Environments . 1-10
Applications . 1-14

How You Can Apply the Technology to the V-Model for
System Development . 1-16
What Is the V-Model? . 1-16
Types of Simulation and Prototyping 1-18
Types of In-the-Loop Testing for Verification and
Validation . 1-19

Learning and Using Real-Time Workshop®
Embedded Coder Software

2
Using the Tutorials . 2-2
Introduction . 2-2
Prerequisites . 2-3
Third-Party Software . 2-3
Setting Up the Tutorial Files . 2-4

iii

Understanding the Demo Model . 2-5
Introduction . 2-5
Understanding the Functional Design of the Model 2-5
Viewing the Top Model . 2-6
Viewing Subsystems . 2-7
Understanding the Simulation Testing Environment 2-8
Running the Simulation Tests . 2-12
Viewing the Configuration Options for Code Generation . . 2-13
Generating Code for the Model . 2-21
Examining the Generated Code . 2-21
Topics for Further Study . 2-23

Configuring the Data Interface . 2-24
Introduction . 2-24
Declaring Data . 2-24
Using Data Objects in Simulink Models and Stateflow
Charts . 2-27

Adding New Data Objects . 2-30
Configuring Data Objects . 2-31
Controlling File Placement of Parameter Data 2-31
Enabling Data Objects in Generated Code 2-32
Effects of Simulation on Data Typing 2-33
Viewing Data Objects in Generated Code 2-35
Managing Data . 2-38
Topics for Further Study . 2-38

Partitioning Functions in the Generated Code 2-39
Introduction . 2-39
About Atomic and Virtual Subsystems 2-39
Viewing Changes in the Model Architecture 2-40
Controlling Function Location and File Placement in
Generated Code . 2-41

Understanding Reentrant Code . 2-42
Using a Mask to Pass Parameters into a Library
Subsystem . 2-43

Generating Code from an Atomic Subsystem 2-44
Generating Code: Full Model vs. Exported Functions 2-45
Effect of Execution Order on Simulation Results 2-47
Topics for Further Study . 2-48

Calling External C Functions from the Model and
Generated Code . 2-50
Introduction . 2-50

iv Contents

Including Preexisting C Functions in a Simulink Model . . 2-50
Creating a Block That Calls a C Function 2-51
Validating the External Code in the Simulink
Environment . 2-52

Validating the C Code as Part of the Simulink Model 2-54
Calling the C Function from the Generated Code 2-55
Topics for Further Study . 2-56

Integrating the Generated Code into the External
Environment . 2-57
Introduction . 2-57
Building and Collecting the Required Data and Files 2-57
Integrating the Generated Code into an Existing
System . 2-58

About the Integration Environment 2-58
Matching the System Interfaces . 2-60
Matching Function-Call Interfaces 2-62
Building a Project in the Eclipse Environment 2-63
Topics for Further Study . 2-64

Testing the Generated Code . 2-65
Introduction . 2-65
Methods for Validating Generated Code 2-65
Reusing Test Data: Test Vector Import/Export 2-67
Testing via Software-in-the-Loop (S-Functions) 2-68
Configuring the System for Testing via Test Vector
Import/Export . 2-70

Testing with Test Vector Import/Export Using the Eclipse
Environment . 2-71

Testing via Processor-in-the-Loop (PIL) 2-72

Evaluating the Generated Code . 2-73
Introduction . 2-73
Evaluating Code . 2-73
About the Compiler Used . 2-74
Viewing the Code Metrics . 2-74
About the Build Option Configurations 2-74
Configuration 1: Reusable Functions, Data Type Double . . 2-75
Configuration 2: Reusable Functions, Data Type Single . . 2-76
Configuration 3: Nonreusable Functions, Data Type
Single . 2-77

v

Installing and Using an IDE for the Integration
and Testing Tutorials (Optional)

A
Installing the Eclipse IDE and Cygwin Debugger A-2
Installing the Eclipse IDE . A-2
Installing the Cygwin Debugger . A-3

Integrating and Testing Code with the Eclipse IDE . . . A-4
Introducing Eclipse . A-4
Defining a New C Project . A-5
Configuring the Debugger . A-6
Starting the Debugger . A-7
Setting the Cygwin Path . A-7
What the Eclipse Debugger Can Do A-8

vi Contents

1

Getting Started with
Real-Time Workshop
Embedded Coder Software

• “What You Need to Know to Use Real-Time Workshop® Embedded Coder”
on page 1-2

• “What You Can Accomplish Using Real-Time Workshop Technology” on
page 1-3

• “How the Technology Can Fit Into Your Development Process” on page 1-6

• “How You Can Apply the Technology to the V-Model for System
Development” on page 1-16

1 Getting Started with Real-Time Workshop® Embedded Coder™ Software

What You Need to Know to Use Real-Time Workshop
Embedded Coder

Before you use the Real-Time Workshop® Embedded Coder™ software, you
should be familiar with

• Using the Simulink® and Stateflow® software to create models or state
machines as block diagrams, running such simulations in Simulink, and
interpreting output in the MATLAB® workspace

• Using Real-Time Workshop® software to generate code and build executable
programs from Simulink models

• High-level programming language concepts applied to embedded, real-time
systems

If you have not done so, you should read:

• The tutorials in the Real-Time Workshop Getting Started Guide. The
tutorials provide hands-on experience in configuring models for code
generation and generating code.

• “Laying Out the Model Architecture” and “Scheduling Considerations” in
the Real-Time Workshop documentation. These sections give a general
overview of the architecture and execution of programs generated by
Real-Time Workshop software.

If you are familiar with C language constructs and want to learn about how
to map commonly used C constructs to code generated from model design
patterns that include Simulink blocks, Stateflow charts, and Embedded
MATLAB™ functions, see Technical Solution 1-6AWSQ9 on the MathWorks™
Web site.

1-2

http://www.mathworks.com/support/solutions/data/1-6AWSQ9.html?product=SL

What You Can Accomplish Using Real-Time Workshop® Technology

What You Can Accomplish Using Real-Time Workshop
Technology

Real-Time Workshop technology generates C or C++ source code and
executables for algorithms that you model graphically in the Simulink
environment or programmatically with the Embedded MATLAB language
subset. You can generate code for any Simulink blocks and MATLAB
functions that are useful for real-time or embedded applications. The
generated source code and executables for floating-point algorithms match
the functional behavior of Simulink simulations and Embedded MATLAB
code execution to high degrees of fidelity. Using the Simulink® Fixed Point™
product, you can generate fixed-point code that provides a bit-wise accurate
match to model simulation results. Such broad support and high degrees
of accuracy are possible because Real-Time Workshop technology is tightly
integrated with the MATLAB and Simulink execution and simulation
engines. In fact, the built-in accelerated simulation modes in Simulink use
Real-Time Workshop technology.

You apply Real-Time Workshop technology explicitly with the Real-Time
Workshop and Real-Time Workshop Embedded Coder products. Using the
Real-Time Workshop product, you can

• Generate source code and executables for discrete-time, continuous-time
(fixed-step), and hybrid systems modeled in Simulink

• Use the generated code for real-time and non-real-time applications,
including simulation acceleration, rapid prototyping, and
hardware-in-the-loop (HIL) testing

• Tune and monitor the generated code by using Simulink blocks and built-in
analysis capabilities, or run and interact with the code completely outside
the MATLAB and Simulink environment

• Generate code for finite state machines modeled in Stateflow event-based
modeling software, using the optional Stateflow® Coder™ product

• Produce source code for many Simulink products and blocksets provided
by The MathWorks™ and third-party vendors.

The Real-Time Workshop Embedded Coder product extends the Real-Time
Workshop product with features that are important for embedded software

1-3

http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/featured/embeddedmatlab/
http://www.mathworks.com/products/featured/embeddedmatlab/
http://www.mathworks.com/products/simfixed/
http://www.mathworks.com/products/stateflow/
http://www.mathworks.com/products/sfcoder/

1 Getting Started with Real-Time Workshop® Embedded Coder™ Software

development. Using the Real-Time Workshop Embedded Coder add-on
product, you gain access to all aspects of Real-Time Workshop technology
and can generate code that has the clarity and efficiency of professional
handwritten code. For example, you can

• Generate code that is compact and fast, which is essential for real-time
simulators, on-target rapid prototyping boards, microprocessors used in
mass production, and embedded systems

• Customize the appearance of the generated code

• Optimize the generated code for a specific target environment

• Integrate existing (legacy) applications, functions, and data

• Enable tracing, reporting, and testing options that facilitate code
verification activities

The following table compares typical applications and key capabilities for
these two code generation products.

Product Typical Applications Key Capabilities

Real-Time Workshop Simulation acceleration

Simulink model encryption

Rapid prototyping

HIL testing

Generate code for discrete-time,
continuous-time (fixed-step),
and hybrid systems modeled in
Simulink

Tune and monitor the execution of
generated code by using Simulink
blocks and built-in analysis
capabilities or by running and
interacting with the code outside
the MATLAB and Simulink
environment

Generate code for finite state
machines modeled in Stateflow
event-based modeling software,
using the optional Stateflow Coder
product

1-4

http://www.mathworks.com/products/rtw/

What You Can Accomplish Using Real-Time Workshop® Technology

Product Typical Applications Key Capabilities

Generate code for many
MathWorks and third-party
Simulink products and blocksets

Integrate existing applications,
functions, and data

Real-Time Workshop
Embedded Coder

All applications listed for the
Real-Time Workshop product

Embedded systems

On-target rapid prototyping
boards

Microprocessors used in mass
production

All capabilities listed for the
Real-Time Workshop product

Generate code that has the clarity
and efficiency of professional
handwritten code

Customize the appearance and
performance of the code for specific
target environments

Enable tracing, reporting, and
testing options that facilitate code
verification activities

1-5

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

1 Getting Started with Real-Time Workshop® Embedded Coder™ Software

How the Technology Can Fit Into Your Development
Process

In this section...

“Tools for Algorithm Development” on page 1-6

“Target Environments” on page 1-10

“Applications” on page 1-14

Tools for Algorithm Development
You can use Real-Time Workshop technology to generate standalone C or C++
source code for algorithms that you develop the following ways:

• With MATLAB code, using the Embedded MATLAB language subset

• As Simulink models

• With MATLAB code that you incorporate into Simulink models

The Embedded MATLAB language subset supports MATLAB operators
and functions for floating-point and fixed-point math. Simulink support for
dynamic system simulation, conditional execution of system semantics, and
large model hierarchies provides an environment for modeling periodic and
event-driven algorithms commonly found in embedded systems. Real-Time
Workshop technology generates code for most Simulink blocks and many
MathWorks products.

If you are familiar with C language constructs and want to learn about how
to map commonly used C constructs to code generated from model design
patterns that include Simulink blocks, Stateflow charts, and Embedded
MATLAB functions, see Technical Solution 1-6AWSQ9 on the MathWorks
Web site.

The following table lists products that the Real-Time Workshop and
Real-Time Workshop Embedded Coder software support.

1-6

http://www.mathworks.com/products/featured/embeddedmatlab/functions.html
http://www.mathworks.com/products/featured/embeddedmatlab/functions.html
http://www.mathworks.com/support/solutions/data/1-6AWSQ9.html?product=SL

How the Technology Can Fit Into Your Development Process

Products Supported by Real-Time
Workshop and Real-Time Workshop
Embedded Coder

Notes

Aerospace Blockset™ —

Communications Blockset™ —

Control System Toolbox™ —

Embedded IDE Link™ —

Fuzzy Logic Toolbox™ —

Gauges Blockset™ —

MATLAB Details: Supports Embedded MATLAB

Model-Based Calibration Toolbox™ —

Model Predictive Control Toolbox™ —

PolySpace® Model Link™ SL Not supported by Real-Time Workshop

Real-Time Windows Target™ —

Signal Processing Blockset™ Details: “Simulink Block Data Type Support
for Signal Processing Blockset” Table (enter the
MATLAB showsignalblockdatatypetable
command)

SimDriveline™ —

SimElectronics® —

SimHydraulics® —

SimMechanics™ —

SimPowerSystems™ Not supported by Real-Time Workshop
Embedded Coder

Simscape™ —

Simulink Details: “Simulink Built-In Blocks That
Support Code Generation” Table in the
Real-Time Workshop documentation

Simulink Fixed Point —

Simulink® 3D Animation™ —

1-7

1 Getting Started with Real-Time Workshop® Embedded Coder™ Software

Products Supported by Real-Time
Workshop and Real-Time Workshop
Embedded Coder

Notes

Simulink® Design Optimization™ —

Simulink® Report Generator™ —

Simulink® Verification and Validation™ —

Stateflow and Stateflow Coder —

System Identification Toolbox™ Exceptions:

• Nonlinear IDNLGREY Model, IDDATA
Source, IDDATA Sink, and estimator blocks

• Nonlinear ARX models that contain custom
regressors

• neuralnet nonlinearities

• customnet nonlinearities

Target Support Package™ —

Vehicle Network Toolbox™ —

Video and Image Processing Blockset™ —

xPC Target™ —

xPC Target Embedded Option™ —

Use of both Embedded MATLAB code and Simulink models is typical for
Model-Based Design projects where you start developing an algorithm
through research and development or advanced production, using MATLAB,
and then use Simulink for system deployment and verification. Benefits of
this approach include:

• Richer system simulation environment

• Ability to verify the Embedded MATLAB code

• Real-Time Workshop and Real-Time Workshop Embedded Coder C/C++
code generation for the model and embedded M-code

1-8

How the Technology Can Fit Into Your Development Process

The following table summarizes how to generate C or C++ code for each of the
three approaches and identifies where you can find more information.

If you develop
algorithms using...

You generate code by... For more information, see...

Embedded MATLAB
language subset

Entering the Real-Time
Workshop function emlc in the
MATLAB Command Window.

“Working with the Embedded
MATLAB Subset”

“Converting MATLAB Code to
C Code”

Simulink Configuring and initiating code
generation for your model or
subsystem with the Simulink
Configuration Parameters
dialog.

“Workflow for Developing
Applications Using Real-Time
Workshop Software” in Getting
Started with Real-Time
Workshop

Embedded MATLAB
language subset and
Simulink

Including Embedded MATLAB
code in Simulink models or
subsystems by using the
Embedded MATLAB Function
block.

To use this block, you can do
one of the following:

• Copy your M-code into the
block.

• Call your M-code from the
block by referencing the
appropriate M-files on the
MATLAB path.

“Working with the Embedded
MATLAB Subset” in
the Embedded MATLAB
documentation

The following figure shows the three design and deployment environment
options. Although not shown in the figure, other products that support code
generation, such as Stateflow software, are available.

1-9

1 Getting Started with Real-Time Workshop® Embedded Coder™ Software

MATLAB® Simulink®

Other MATLAB
code

Embedded MATLAB™

language subset
Embedded MATLAB™

Function block

Real-Time Workshop® technology

C or C++

Compiler or
IDE toolchain

Executable
(runs in target environment)

Other Simulink
blocks

Target Environments
In addition to generating source code for a model or subsystem, Real-Time
Workshop technology generates make or project files you need to build an
executable for a specific target environment. The generated make or project
files are optional. That is, if you prefer, you can build an executable for the
generated source files by using an existing target build environment, such
as a third-party integrated development environment (IDE). Applications
of code generated with Real-Time Workshop technology range from calling
a few exported C or C++ functions on a host computer to generating a
complete executable using a custom build process, for custom hardware, in an
environment completely separate from the host computer running MATLAB
and Simulink.

1-10

How the Technology Can Fit Into Your Development Process

Real-Time Workshop technology provides built-in system target files that
generate, build, and execute code for specific target environments. These
system target files offer varying degrees of support for interacting with the
generated code to log data, tune parameters, and experiment with or without
Simulink as the external interface to your generated code.

Before you select a system target file, you need to identify the target
environment on which you expect to execute your generated code. The three
most common target environments include:

Target
Environment

Description

Host computer The same computer that runs MATLAB and Simulink. Typically, a host
computer is a PC or UNIX®1 environment that uses a non-real-time
operating system, such as Microsoft®Windows® or Linux®2. Non-real-time
(general purpose) operating systems are nondeterministic. For example,
they might suspend code execution to run an operating system service
and then, after providing the service, continue code execution. Thus, the
executable for your generated code might run faster or slower than the
sample rates you specified in your model.

Real-time
simulator

A different computer than the host computer. A real-time simulator can
be a PC or UNIX environment that uses a real-time operating system
(RTOS), such as:

• xPC Target system

• A real-time Linux system

• A Versa Module Eurocard (VME) chassis with PowerPC® processors
running a commercial RTOS, such as VxWorks® from Wind River®

Systems

The generated code runs in real time and behaves deterministically.
Although, the exact nature of execution varies based on the particular
behavior of the system hardware and RTOS.

1. UNIX® is a registered trademark of The Open Group in the United States and other
countries.

2. Linux® is a registered trademark of Linus Torvalds.

1-11

http://en.wikipedia.org/wiki/RTOS
http://en.wikipedia.org/wiki/RTOS
http://www.mathworks.com/products/xpctarget/

1 Getting Started with Real-Time Workshop® Embedded Coder™ Software

Target
Environment

Description

Typically, a real-time simulator connects to a host computer for data
logging, interactive parameter tuning, and Monte Carlo batch execution
studies.

Embedded
microprocessor

A computer that you eventually disconnect from a host computer and
run standalone as part of an electronics-based product. Embedded
microprocessors range in price and performance, from high-end digital
signal processors (DSPs) used to process communication signals to
inexpensive 8-bit fixed-point microcontrollers used in mass production (for
example, electronic parts produced in the millions of units). Embedded
microprocessors can:

• Use a full-featured RTOS

• Be driven by basic interrupts

• Use rate monotonic scheduling provided with Real-Time Workshop
technology

A target environment can:

• Have single- or multiple-core CPUs

• Be standalone or communicate as part of a computer network

In addition, you can deploy different parts of a Simulink model on different
target environments. For example, it is common to separate the component
(algorithm or controller) portion of a model from the environment (or plant).
Using Simulink to model an entire system (plant and controller) is often
referred to as closed-loop simulation and can provide many benefits such as
early verification of component correctness.

The following figure shows example target environments for code generated
for a model.

1-12

http://en.wikipedia.org/wiki/Rate-monotonic_scheduling

How the Technology Can Fit Into Your Development Process

Co
de

ge
ne

ra
tio

n

Algorithm model

Host
executable

System model

Host computer(s)

Embedded
microprocessor

Real-time
simulator

Environment model

Co
de

ge
ne

ra
tio

n

Co
de

ge
ne

ra
tio

n

1-13

1 Getting Started with Real-Time Workshop® Embedded Coder™ Software

Applications
The following table lists several ways you can apply Real-Time Workshop
technology in the context of the different target environments.

Application Description

Host Computer

Accelerated simulation You apply techniques to speed up the execution of model
simulation in the context of the MATLAB and Simulink
environment. Accelerated simulations are especially
useful when run time is long compared to the time
associated with compilation and checking whether the
target is up to date.

Rapid simulation You execute code generated for a model in non-real time
on the host computer, but outside the context of the
MATLAB and Simulink environment.

System simulation You integrate components into a larger system. You
provide generated source code and related dependencies
for building in another environment or a host-based
shared library to which other code can dynamically link.

Model encryption You generate a Simulink shareable object library for a
model or subsystem for use by a third-party vendor in
another Simulink simulation environment.

Real-Time Simulator

Rapid prototyping You generate, deploy, and tune code on a real-time
simulator connected to the system hardware (for
example, physical plant or vehicle) being controlled.
This design step is also crucial for validating whether a
component can adequately control the physical system.

System simulation You integrate generated source code and dependencies
for components into a larger system that is built in
another environment. You can use shared library files to
encrypt components for intellectual property protection.

1-14

How the Technology Can Fit Into Your Development Process

Application Description

On-target rapid prototyping You generate code for a detailed design that you can
run in real time on an embedded microprocessor while
tuning parameters and monitoring real-time data. This
design step allows you to assess, interact with, and
optimize code, using embedded compilers and hardware.

Embedded Microprocessor

Production code generation From a model, you generate code that is optimized for
speed, memory usage, simplicity, and if necessary,
compliance with industry standards and guidelines.

Software-in-the-loop (SIL) testing You execute generated code with your plant model
within Simulink to verify successful conversion of
the model to code. You might change the code to
emulate target word size behavior and verify numerical
results expected when the code runs on an embedded
microprocessor, or use actual target word sizes and just
test production code behavior.

Processor-in-the-loop (PIL) testing You test an object code component with a plant
or environment model in an open- or closed-loop
simulation to verify successful model-to-code conversion,
cross-compilation, and software integration.

Hardware-in-the-loop (HIL) testing You verify an embedded system or embedded computing
unit (ECU), using a real-time target environment.

1-15

1 Getting Started with Real-Time Workshop® Embedded Coder™ Software

How You Can Apply the Technology to the V-Model for
System Development

In this section...

“What Is the V-Model?” on page 1-16

“Types of Simulation and Prototyping” on page 1-18

“Types of In-the-Loop Testing for Verification and Validation” on page 1-19

What Is the V-Model?
The V-model is a representation of system development that highlights
verification and validation steps in the system development process. As the
following figure shows, the left side of the V identifies steps that lead to code
generation, including requirements analysis, system specification, detailed
software design, and coding. The right side focuses on the verification and
validation of steps cited on the left side, including software integration and
system integration.

1-16

How You Can Apply the Technology to the V-Model for System Development

System Specification

Coding

Software Detailed
Design

System Integration
and Calibration

 Hardware-in-the-loop
(HIL) testing

 Processor-in-the-loop
(PIL) testing

Simulation

Rapid simulation

System simulation (export)

Rapid prototyping

 Software-in-the-loop
(SIL) testing

On-target rapid prototyping

Production code generation

Model encryption (export)

Verification and validation

Software Integration

Depending on your application and role in the process, you might focus on one
or more of the steps called out in the V or repeat steps at several stages of
the V. Real-Time Workshop technology and related products provide tooling
you can apply at each step.

The following sections compare

• Types of simulation and prototyping

• Types of in-the-loop testing for verification and validation

For a map of information on applications of Real-Time Workshop technology
identified in the figure, see the following tables:

• “Documenting and Validating Requirements”

1-17

1 Getting Started with Real-Time Workshop® Embedded Coder™ Software

• “Developing a Model Executable Specification”

• “Developing a Detailed Software Design”

• “Generating the Application Code”

• “Integrating and Verifying Software”

• “Integrating, Verifying, and Calibrating System Components”

Types of Simulation and Prototyping
The following table compares the types of simulation and prototyping
identified on the left side of the V-model diagram.

Host-Based
Simulation

Standalone
Rapid
Simulations

Rapid
Prototyping

On-Target Rapid
Prototyping

Purpose Test and validate
functionality of
concept model

Refine, test,
and validate
functionality of
concept model in
non-real time

Test new ideas
and research

Refine and
calibrate
designs during
development
process

Execution
hardware

Host computer Host computer

Standalone
executable
runs outside
of MATLAB
and Simulink
environment

PC or nontarget
hardware

Embedded
computing
unit (ECU) or
near-production
hardware

1-18

How You Can Apply the Technology to the V-Model for System Development

Host-Based
Simulation

Standalone
Rapid
Simulations

Rapid
Prototyping

On-Target Rapid
Prototyping

Code
efficiency
and I/O
latency

Not applicable Not applicable Less emphasis
on code efficiency
and I/O latency

More emphasis on
code efficiency and
I/O latency

Ease of use
and cost

Can simulate
component
(algorithm or
controller) and
environment (or
plant)

Normal mode
simulation in
Simulink enables
you to access,
display, and
tune data and
parameters while
experimenting

Can accelerate
Simulink
simulations with
Accelerated and
Rapid Accelerated
modes

Easy to simulate
models of hybrid
dynamic systems
that include
components and
environment
models

Ideal for batch
or Monte Carlo
simulations

Can repeat
simulations with
varying data sets,
interactively or
programmatically
with scripts,
without rebuilding
the model

Can be connected
to Simulink
to monitor
signals and tune
parameters

Might require
custom real-time
simulators and
hardware

Might be done
with inexpensive
off-the-shelf PC
hardware and I/O
cards

Might use existing
hardware, thus
less expensive and
more convenient

Types of In-the-Loop Testing for Verification and
Validation
The following table compares the types of in-the-loop testing for verification
and validation identified on the right side of the V-model diagram.

1-19

1 Getting Started with Real-Time Workshop® Embedded Coder™ Software

SIL Testing PIL Testing
on Embedded
Hardware

PIL Testing on
Instruction Set
Simulator

HIL Testing

Purpose Verify component
source code

Verify component
object code

Verify component
object code

Verify system
functionality

Fidelity and
accuracy

Two options:

Same source
code as target,
but might
have numerical
differences

Changes source
code to emulate
word sizes, but is
bit accurate for
fixed-point math

Same object code

Bit accurate for
fixed-point math

Cycle accurate
since code runs on
hardware

Same object code

Bit accurate for
fixed-point math

Might not be cycle
accurate

Same executable
code

Bit accurate for
fixed-point math

Cycle accurate

Use real and
emulated system
I/O

Execution
platforms

Host Target Host Target

Ease of use
and cost

Desktop
convenience

Executes just in
Simulink

No cost for
hardware

Executes on desk
or test bench

Uses hardware —
process board and
cables

Desktop
convenience

Executes just on
host computer
with Simulink
and integrated
development
environment
(IDE)

No cost for
hardware

Executes on test
bench or in lab

Uses hardware
— processor,
embedded
computer unit
(ECU), I/O devices,
and cables

Real time
capability

Not real time Not real time
(between samples)

Not real time
(between
samples)

Hard real time

1-20

2

Learning and Using
Real-Time Workshop
Embedded Coder Software

• “Using the Tutorials” on page 2-2

• “Understanding the Demo Model” on page 2-5

• “Configuring the Data Interface” on page 2-24

• “Partitioning Functions in the Generated Code” on page 2-39

• “Calling External C Functions from the Model and Generated Code” on
page 2-50

• “Integrating the Generated Code into the External Environment” on page
2-57

• “Testing the Generated Code” on page 2-65

• “Evaluating the Generated Code” on page 2-73

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Using the Tutorials

In this section...

“Introduction” on page 2-2

“Prerequisites” on page 2-3

“Third-Party Software” on page 2-3

“Setting Up the Tutorial Files” on page 2-4

Introduction
The process for designing and implementing a control algorithm for an
embedded real-time application varies among different organizations.
However, some basic steps in the process are common. This getting started
documentation provides seven tutorials that apply MathWorks products to
those common steps. In these tutorials, you configure a Simulink model and
use Real-Time Workshop Embedded Coder software to

• Generate code for the model

• Integrate the generated code with an application framework outside the
Simulink environment

• Test and analyze the generated code

Each tutorial focuses on a specific aspect of code generation or integration and
is self-contained. You can step through them in any order, and skim or skip
any that do not apply to your needs. The seven tutorials are:

• “Understanding the Demo Model” on page 2-5

• “Configuring the Data Interface” on page 2-24

• “Partitioning Functions in the Generated Code” on page 2-39

• “Calling External C Functions from the Model and Generated Code” on
page 2-50

• “Integrating the Generated Code into the External Environment” on page
2-57

• “Testing the Generated Code” on page 2-65

2-2

Using the Tutorials

• “Evaluating the Generated Code” on page 2-73

Each tutorial uses a unique Simulink demo model and data set. As you
proceed through the tutorials, you save each model after you have worked
on it, preserving your modifications to the model and model data for future
examination. To prevent any errors from carrying over, you begin the next
tutorial by opening a new model and loading new data.

These tutorials provide instructions for performing specific tasks and
references related documentation. If a task fails for any reason, error
messages appear in the MATLAB Command Window.

Prerequisites
The tutorials assume familiarity with the following techniques:

MathWorks products

• How to read, write, and apply M-file scripts

• How to create a basic Simulink model with Stateflow charts

• How to run Simulink simulations and evaluate the results

C programming

• How to use C data types and storage classes

• How to use function prototypes and call functions

• How to compile a C function

Metrics for evaluating embedded software

• How to evaluate basic code readability

• How to evaluate RAM/ROM usage

Third-Party Software
To compile and build generated code for the integration and testing tutorials,
you can use an Integrated Development Environment (IDE) or equivalent
tools such as command-line compilers and makefiles. Appendix A, “Installing

2-3

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

and Using an IDE for the Integration and Testing Tutorials (Optional)”
explains how to install and use the Eclipse™ IDE for C/C++ Developers and
the Cygwin™ debugger, for integrating and testing your generated code.

Setting Up the Tutorial Files
Set up a directory for your tutorial work:

1 Create a writable working directory outside the scope of your MATLAB
installation directory.

2 Copy the following files from matlabroot/toolbox/rtw/rtwdemos to your
working directory:

rtwdemo_PCG_Eval_P1.mdl
rtwdemo_PCG_Eval_P2.mdl
rtwdemo_PCG_Eval_P3.mdl
rtwdemo_PCG_Eval_P4.mdl
rtwdemo_PCG_Eval_P5.mdl
rtwdemo_PCG_Eval_P6.mdl
rtwdemo_PCGEvalHarness.mdl
rtwdemo_PCGEvalHarnessSFun.mdl

2-4

Understanding the Demo Model

Understanding the Demo Model

In this section...

“Introduction” on page 2-5

“Understanding the Functional Design of the Model” on page 2-5

“Viewing the Top Model” on page 2-6

“Viewing Subsystems” on page 2-7

“Understanding the Simulation Testing Environment” on page 2-8

“Running the Simulation Tests” on page 2-12

“Viewing the Configuration Options for Code Generation” on page 2-13

“Generating Code for the Model” on page 2-21

“Examining the Generated Code” on page 2-21

“Topics for Further Study” on page 2-23

Introduction
This tutorial introduces a Simulink demo model, rtwdemo_PCG_Eval_P1, from
a behavioral and structural perspective. It explains how to generate code and
shows the basics of configuring a model.

In this tutorial, you:

• Understand the functional behavior of the model

• Understand how to validate the model

• Become familiar with model checking tools

• Become familiar with configuration options that affect code generation

• Learn how to generate code from a model

Understanding the Functional Design of the Model
This tutorial uses a simple but functionally complete demo model of a
throttle controller. The model features redundancy, which is common for

2-5

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

safety-critical, drive-by-wire applications. The model highlights a standard
model structure and a set of basic blocks used in algorithm design.

In the provided configuration, the model generates code. However, the code
is not configured for a production target system. This tutorial guides you
through the steps necessary to change the target configuration and shows how
the format of the generated code changes with the completion of each task.

Viewing the Top Model
Open the top model by entering rtwdemo_PCG_Eval_P1 at the MATLAB
command line.

The top model consists of:

• Four subsystems: PI_ctrl_1, PI_ctrl_2, Define_Throt_Param, and
Pos_Command_Arbitration

• Top-level inputs: pos_rqst, fbk_1, and fbk_2

• Top-level outputs: pos_cmd_one, pos_cmd_two, and ThrotComm1

• Signal routing

• No blocks that change the value of a signal, such as Sum and Integrator

The layout uses a basic architectural style for models:

• Separation of calculations from signal routing (lines and buses)

2-6

Understanding the Demo Model

• Partitioning into subsystems

You can apply this style to all types of models.

Viewing Subsystems
Perform the following steps to explore two of the key subsystems in the top
model.

1 Open the rtwdemo_PCG_Eval_P1 demo model.

Two subsystems in the top model represent proportional-integral (PI)
controllers, PI_ctrl_1 and PI_ctrl_2. These identical subsystems, at
this stage, use identical data. Later, you use the subsystems to learn how
Real-Time Workshop software can create reusable functions.

2 Open the PI_ctrl_1 subsystem by double-clicking the subsystem block.

The PI controllers in the model are from a library, a group of related blocks
or models for reuse. Libraries provide one of two methods for including and
reusing models. The second method, model referencing, is covered below in
“Understanding the Simulation Testing Environment” on page 2-8. You
cannot edit a block that you add to a model from a library in the context of
the model. To edit the block, you must do so in the library. This restriction
ensures that instances of the block in different models remain consistent.

3 Open the Pos_Command_Arbitration subsystem by double-clicking the
subsystem block. The Stateflow chart performs basic error checking on

2-7

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

the two command signals. If the command signals are too far apart, the
Stateflow diagram sets the output to a fail_safe position.

Understanding the Simulation Testing Environment
To test your throttle controller algorithm, you incorporate it into a test
harness. A test harness is a model that evaluates the control algorithm and
offers the following benefits:

• Separates test data from the control algorithm

• Separates the plant or feedback model from the control algorithm

• Provides a reusable environment for multiple versions of the control
algorithm

The test harness model provided with this tutorial implements a common
simulation testing environment, consisting of the following parts:

• Unit under test

• Test vector source

2-8

Understanding the Demo Model

• Evaluation and logging

• Plant or feedback system

• Input and output scaling

Perform the following steps to explore the simulation testing environment.

1 Open the test harness model by entering rtwdemo_PCGEvalHarness at
the MATLAB command line.

2 In this test harness, the control algorithm is the unit under test. The
control algorithm from rtwdemo_PCG_Eval_P1 is referenced using a
Model block named Unit_Under_Test. To confirm this, you can open the
Unit_Under_Test block and view the control algorithm. Also, you can view
the model reference parameters by right-clicking the Unit_Under_Test
block and selecting Model Reference Parameters. The name of the
referenced model rtwdemo_PCG_Eval_P1 is shown in the Model name
field of the Model Reference dialog box. The Model block provides a second
method for reusing components.

2-9

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

The Model block allows you to reference other models (directly or indirectly)
from the top model as compiled functions. By default, Simulink software
recompiles the model when the referenced models change. Compiled
functions have several advantages over libraries:

• Simulation time is faster for large models.

• You can directly simulate compiled functions.

• The simulation requires less memory. Only one copy of the compiled
model is in memory, even when the model is referenced multiple times.

3 Open the test vector source, implemented in this test harness as the
Test_Vectors subsystem.

The test harness model uses a Signal Builder block for the test vector
source. The block has data that drives the simulation (pos_rqst) and
provides the expected results used by the Verification subsystem. This
demo model uses only one set of test data. Typically, you would create a
test suite that fully exercises the system.

2-10

Understanding the Demo Model

4 Open the evaluation and logging subsystem, implemented in this test
harness as Verification.

The test harness compares the control algorithm simulation results against
golden data— a set of test results that have been certified by an expert to
exhibit the desired behavior for the control algorithm. In this subsystem,
an Assertion block compares the simulated throttle value position from the
plant against the golden value from the test harness. If the difference
between the two signals is greater than 5%, the test fails and the Assertion
block stops the simulation.

Alternatively, you can evaluate the simulation data after the simulation
completes execution. You can use either M-file scripts or third-party tools
to perform the evaluation. Post-execution evaluation provides greater
flexibility in the analysis of the data. However, it requires waiting until
execution is complete. Combining the two methods can provide a highly
flexible and efficient test environment.

5 Open the plant or feedback system, implemented in this test harness as
the Plant subsystem.

2-11

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

The Plant subsystem models the throttle dynamics with a transfer function
in canonical form. You can create plant models to any level of fidelity. It is
common to use different plant models at different stages of testing.

6 Open the input and output scaling subsystems, implemented in this test
harness as Input_Signal_Scaling and Output_Signal_Scaling.

The subsystems that scale input and output perform three primary
functions:

• Select input signals to route to the unit under test and output signals
to route to the plant.

• Rescale signals between engineering units and units for writable the
unit under test.

• Handle rate transitions between the plant and the unit under test.

Running the Simulation Tests

1 Set up your C compiler by entering mex -setup at the MATLAB command
line and specifying a valid, installed compiler.

2 Check that your working directory is set to a writable directory, such as the
directory to which you copied the tutorial demos.

3 In the toolbar of the rtwdemo_PCGEvalHarness model, click the Start
simulation icon to run the test harness model simulation.

The first time the test harness runs, the Real-Time Workshop software
compiles the referenced model. You can monitor the compilation progress
in the MATLAB Command Window.

When the model simulation is complete, Simulink software displays the
results in a plot window, shown below.

The lower right plot shows the difference between the expected (golden)
throttle position and the throttle position that the plant calculates. If
the difference between the two values had been greater than ±0.05, the
simulation would have stopped.

2-12

Understanding the Demo Model

4 Close the rtwdemo_PCGEvalHarness model.

Viewing the Configuration Options for Code
Generation
The first step in preparing a model for code generation is to set model
configuration parameters. The configuration parameters determine the
method Real-Time Workshop software uses to generate the code and
the resulting format. One way of setting the parameters is to use the
Configuration Parameters dialog box, directly accessible through the
Model Editor Simulation menu. Alternatively, open Model Explorer,
accessible through the Model Editor View menu.

This tutorial focuses on four areas of model configuration:

• Solver options

• Optimization options

• Hardware implementation options

• Real-Time Workshop options

2-13

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Perform the following steps to explore model configuration options.

1 Open the demo model rtwdemo_PCG_Eval_P1 by entering
rtwdemo_PCG_Eval_P1 at the MATLAB command line.

2 Open Model Explorer and click Configuration (Active) in the Model
Hierarchy pane.

3 Open the Solver pane.

For Real-Time Workshop software to generate code for a model, you must
configure the model to use a fixed-step solver. The start and stop time do
not affect generated code.

Option Required Setting Effect on Generated
Code

Start time and Stop
time

Any No effect

Type Fixed-step Enables code
generation

2-14

Understanding the Demo Model

Option Required Setting Effect on Generated
Code

Solver Any Controls selection of
integration technique
used to compute the
state derivative of the
model

Fixed-step size Must be lowest
common multiple of
all rates in the system

Sets base rate of the
system

Tasking mode for
periodic sample
times

SingleTasking or
MultiTasking

MultiTasking
generates one entry
point function for each
rate in the system

4 Open the Optimization pane.

2-15

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

The Optimization pane includes the following subpanes.

2-16

Understanding the Demo Model

Subpane Effect

Simulation and code generation Removes unused branches from
the code and controls creation of
temporary variables

Signals Controls code optimizations
related to signals — for example,
reduces the number of temporary
variables created by collapsing
multiple computations into a
single assignment and by reusing
temporary variables

Data initialization Controls which signals have explicit
initialization code

Integer and fixed-point Enables and disables use of
overflow and division-by-zero
protection code

Stateflow Controls how the Stateflow
software stores bit-wise information

Accelerating simulations Provides control over builds for
simulations involving accelerator
modes or referenced models — no
effect on Real-Time Workshop code
generation

5 Open the Hardware Implementation pane.

2-17

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Use hardware implementation parameters to specify the word size and
byte ordering of the target hardware. This demo model targets a generic
32-bit embedded processor.

6 Open the Real-Time Workshop pane.

2-18

Understanding the Demo Model

The Real-Time Workshop pane is where you specify the system target
file (STF) and the language for your generated code. This demo model
uses the Real-Time Workshop Embedded Coder STF (ert.tlc) and the C
language. You can extend the STF to create a customized configuration.
Some of the basic configuration options reachable from the Real-Time
Workshop pane include:

2-19

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

• Selection of the code generator target:

– ert.tlc — base Embedded Real-Time Target

– grt.tlc — base Generic Real-Time Target

– Hardware-specific targets

• Selection of code generation language:

– C — C code

– C++ — C++ compatible code

– C++ (Encapsulated) — C++ code with a model class that
encapsulates model data and entry-point functions

• Build process options including selection of make file and compiler
optimizations

• Additional categories of options on subsidiary panes, such as Report,
Comments, Symbols, Custom Code, Debug, Interface, Code Style,
and Templates, among others.

• Code formatting options:

– Line length

– Use of parentheses

– Header file information

– Variable naming conventions

• Inclusion of custom code:

– C files

– H files

– Object files

– Directory paths

• Generation of ASAP2 files

• Code generation objectives options to identify changes to model
constructs and settings that improve the generated code (see “Mapping
Application Objectives to Model Configuration Parameters”).

2-20

Understanding the Demo Model

The Real-Time Workshop pane also contains a Build button that you can
use to build your model. If you select the option Generate code only, the
button is relabeled to Generate code.

Generating Code for the Model
Perform the following steps to generate code for the demo model that
implements the control algorithm.

1 Set up your C compiler by entering mex -setup at the MATLAB command
line and specifying a valid, installed compiler.

2 Check that your working directory is set to a writable directory, such as the
directory to which you copied the tutorial demos.

3 Open the rtwdemo_PCG_eval_P1 demo model and use one of the following
methods to generate code:

• Click the Generate code button in the Configuration Parameters >
Real-Time Workshop pane.

• Select Tools > Real-Time Workshop > Build Model.

The Real-Time Workshop build process generates several files. The
resulting code, while computationally efficient, is not yet organized for
integration into the production environment.

Examining the Generated Code
Building the rtwdemo_PCG_eval_P1 demo model generates multiple files into
a subdirectory of your current working directory. In addition to the standard
C and H files, the build process generates an HTML code generation report,
which provides active links between the code and the model.

Perform the following steps to examine the generated code for the demo model
that implements the control algorithm.

1 Generate code for the rtwdemo_PCG_eval_P1 demo model using one of
the methods described in the previous section, “Generating Code for the
Model” on page 2-21.

2-21

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

2 Open Model Explorer, and in theModel Hierarchy pane, select Code for
rtwdemo_PCG_Eval_P1.

3 In Model Explorer Contents pane for the generated model code, select
HTML Report. Model Explorer displays the HTML code generation report
for the rtwdemo_PCG_eval_P1 demo model.

4 In the HTML report, click the link for the generated file
rtwdemo_PCG_Eval_P1.c and examine the generated code. Notice that:

• All of the controller code is in one function, rtwdemo_PCG_Eval_P1_step.

• The operations of multiple blocks are in one equation.

• The rtwdemo_PCG_Eval_P1_initialize function initializes variables.

• Real-Time Workshop data structures (for example,
rtwdemo_PCG_Eval_P1_U.pos_rqst) define all data.

• You can click links in the HTML report to display and highlight the
corresponding model block. For example, as shown below, you can
click the link <S2>/Sum2 in the HTML report to highlight and display
the corresponding Sum block in your model (as well as the PI_ctrl_1
subsystem block that contains it).

5 Close the rtwdemo_PCG_eval_P1 demo model.

2-22

Understanding the Demo Model

You can view any of the files listed below by clicking their links in the HTML
report Contents pane, or by exploring the generated code subdirectory
created in your working directory by the build process.

File Description

rtwdemo_PCG_Eval_P1.c C file with step and initialization
functions

rtwdemo_PCG_Eval_P1_data.c C file that assigns values to
Real-Time Workshop data structures

ert_main.c Example main module that includes
a simple scheduler

rtwdemo_PCG_Eval_P1.h H file that defines data structures

PCG_Eval_p1_private.h File that defines data used only by
the generated code

rtwdemo_PCG_Eval_P1_types.h H file that defines the model data
structure

Topics for Further Study

• “Supporting Optional Features” in the Real-Time Workshop Embedded
Coder documentation

• “Building Executables” in the Real-Time Workshop documentation

• “Configuration Parameters” in the Real-Time Workshop Embedded Coder
documentation

• “Working with Signal Groups” in the Simulink documentation

• Simulink Verification and Validation documentation

2-23

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Configuring the Data Interface

In this section...

“Introduction” on page 2-24

“Declaring Data” on page 2-24

“Using Data Objects in Simulink Models and Stateflow Charts” on page 2-27

“Adding New Data Objects” on page 2-30

“Configuring Data Objects” on page 2-31

“Controlling File Placement of Parameter Data” on page 2-31

“Enabling Data Objects in Generated Code” on page 2-32

“Effects of Simulation on Data Typing” on page 2-33

“Viewing Data Objects in Generated Code” on page 2-35

“Managing Data” on page 2-38

“Topics for Further Study” on page 2-38

Introduction
This tutorial explains how to configure the data interface for the generated
code of a model. In this tutorial, you learn how to control the following
attributes of signals and parameters in the generated code:

• Name

• Data type

• Data storage class

Declaring Data
Most programming languages require that you declare data before using it.
The declaration specifies the following:

Data
Attribute

Description

Scope The region of the program that has access to the data

2-24

Configuring the Data Interface

Data
Attribute

Description

Duration The period during which the data is resident in memory

Data type The amount of memory allocated for the data

Initialization An initial value, a pointer to memory, or NULL (if you do
not provide an initial value, most compilers assign a zero
value or a null pointer)

The following data types are supported for code generation.

Supported Data Types

Name Description

double Double-precision floating point

single Single-precision floating point

int8 Signed 8-bit integer

uint8 Unsigned 8-bit integer

int16 Signed 16-bit integer

uint16 Unsigned 16-bit integer

int32 Signed 32-bit integer

uint32 Unsigned 32-bit integer

Fixed point
data types

8-, 16-, 32-bit word lengths

The combination of scope and duration comprises the storage class of a
data item. The following predefined storage classes are supported for code
generation.

2-25

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Supported Predefined Storage Classes

Name Description Parameters
Supported

Signals
Supported

Data Types

Const Use const type
qualifier in
declaration

Y N All

ConstVolatile Use const
volatile type
qualifier in
declaration

Y N All

Volatile Use volatile
type qualifier in
declaration

Y Y All

ExportToFile Generate and
include files, with
user-specified
name, containing
global variable
declarations and
definitions

Y Y All

ImportFromFile Include
predefined
header files
containing
global variable
declarations

Y Y All

Exported
Global

Declare and
define variables
of global scope

Y Y All

Imported
Extern

Import a variable
defined outside of
the scope of the
model

Y Y All

2-26

Configuring the Data Interface

Supported Predefined Storage Classes (Continued)

Name Description Parameters
Supported

Signals
Supported

Data Types

BitField Embed Boolean
data in a named
bit field

Y Y Boolean

Define Represent
parameters with
a #define macro

Y N All

Struct Embed data in a
named structure
to encapsulate
sets of data

Y Y All

Using Data Objects in Simulink Models and Stateflow
Charts
Two methods are available for declaring data in Simulink models and
Stateflow charts: data objects and direct specification. This tutorial uses the
data object method. Both methods allow full control over the data type and
storage class. You can mix the two methods in a single model.

You can use data objects in a variety of ways in the MATLAB and Simulink
environment. The tutorial focuses on three types of data objects:

• Signal

• Parameter

• Bus

To configure the data interface for your model using the data object method,
you define data objects in the MATLAB base workspace and then associate
them with your Simulink model or embedded Stateflow chart. When you
build your model, the Real-Time Workshop build process uses the associated
base workspace data objects in the generated code.

2-27

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

A data object has a mixture of active and descriptive fields. Active fields affect
simulation or code generation. Descriptive fields do not affect simulation or
code generation, but are used with data dictionaries and model-checking tools.

• Active fields:

- Data type

- Storage class

- Value (parameters)

- Initial value (signals)

- Alias (define a different name in the generated code)

- Dimension (inherited for parameters)

- Complexity (inherited for parameters)

• Descriptive fields:

- Minimum

- Maximum

- Units

- Description

You can create and inspect base workspace data objects by entering commands
at the MATLAB command line or by using Model Explorer. Perform the
following steps to explore base workspace signal data objects declared for the
rtwdemo_PCG_Eval_P2 demo model.

1 Open the rtwdemo_PCG_Eval_P2 demo model by entering
rtwdemo_PCG_Eval_P2 at the MATLAB command line.

2 Open Model Explorer.

3 Select Base Workspace.

4 Select the pos_cmd_one signal data object for viewing

2-28

Configuring the Data Interface

You can also view the definition of Simulink signal object pos_cmd_one by
entering pos_cmd_one at the MATLAB command line:

pos_cmd_one =

Simulink.Signal (handle)

RTWInfo: [1x1 Simulink.SignalRTWInfo]

Description: 'Throttle position command from the first PI controller'

DataType: 'double'

Min: -1

Max: 1

DocUnits: 'Norm'

Dimensions: -1

Complexity: 'auto'

SampleTime: -1

SamplingMode: 'auto'

InitialValue: '0'

2-29

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

5 To view other signal objects, click the object name in Model Explorer or
enter the object name at the MATLAB command line. The following table
summarizes object characteristics for this model.

Object
Characteristics

pos_cmd_one pos_rqst P_InErrMap ThrotComm* ThrottleCommands*

Description Top-level
output

Top-level
input

Calibration
parameter

Top-level
output
structure

Bus definition

Data type Double Double Auto Auto Structure

Storage class Exported
global

Imported
extern
pointer

Constant Exported
global

None

* ThrottleCommands defines a Simulink Bus object; ThrotComm is the
instantiation of the bus. If the bus is a nonvirtual bus, the signal generates
a structure in the C code.

As in C, you can use a bus definition (ThrottleCommands) to instantiate
multiple instances of the structure. In a model diagram, a bus object appears
as a wide line with central dashes, as shown below.

Adding New Data Objects
You can create data objects for named signals, states, and parameters. To
associate a data object with a construct, the construct must have a name.

The Data Object Wizard is a tool that finds constructs for which you can
create data objects, and then creates the objects for you. The model includes
two signals that are not associated with data objects: fbk_1 and pos_cmd_two.

2-30

Configuring the Data Interface

To find the signals and create data objects for them:

1 Open the Data Object Wizard by selecting Tools > Data Object Wizard
in the Model Editor.

2 Click the Find button to find candidate constructs.

3 Click the Check All button to select all candidates.

4 Click the Apply Package button to apply the default Simulink package
for the data objects.

5 Click the Create button to create the data objects.

Configuring Data Objects
The next step is to set the data type and storage class:

1 Open Model Explorer and view the base workspace.

2 For each object listed in the following table:

a Click the signal name in the Contents pane.

b Change the settings in the Data pane to match those in the table.

c Click the Apply button.

Signal Data Type Storage Class

fbk_1 double ImportedExtern

pos_cmd_two double ExportedGlobal

Controlling File Placement of Parameter Data
Real-Time Workshop Embedded Coder software allows you to control the files
that define the parameters and constants. In this tutorial, all parameters
are in eval_data.c.

To change the placement of parameter and constant definitions, set the
appropriate data placement options.

2-31

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

1 Within Model Explorer, enter the data options in the
Configuration > Real-Time Workshop > Data Placement
pane, as shown in the following figure.

2 eval_data.c is shown below:

/* Const memory section */

17 /* Definition for custom storage class: Const */

18 const real_T I_Gain = -0.03;

19 const real_T I_InErrMap[9] = { -1.0, -0.5, -0.25, -0.05, 0.0, 0.05, 0.25, 0.5,

20 1.0 } ;

21

22 const real_T I_OutMap[9] = { 1.0, 0.75, 0.6, 0.0, 0.0, 0.0, 0.6, 0.75, 1.0 } ;

23

24 const real_T P_Gain = 0.74;

25 const real_T P_InErrMap[7] = { -1.0, -0.25, -0.01, 0.0, 0.01, 0.25, 1.0 } ;

26

27 const real_T P_OutMap[7] = { 1.0, 0.25, 0.0, 0.0, 0.0, 0.25, 1.0 } ;

Enabling Data Objects in Generated Code
The next step is to ensure that the data objects you have created appear in
the generated code:

1 In Model Explorer, make sure the
Configuration > Optimizations > Inline parameters check box
is selected.

2 Enable a signal in generated code:

2-32

Configuring the Data Interface

a In the model, right-click the pos_cmd_one signal line.

b Select Signal Properties. A Signal Properties dialog box appears.

c Make sure the Signal name must resolve to a Simulink signal
object check box is selected.

3 Enable all of the signals in the model simultaneously by entering the
following at the MATLAB command line:

disableimplicitsignalresolution('rtwdemo_PCG_Eval_P2')

4 Save the model (requires a Stateflow license) for use in the next section.

Effects of Simulation on Data Typing
In the rtwdemo_PCG_Eval_P2 model, all data types are set to double. Since
Simulink software uses the double data type for simulation, you should not
expect changes in the model behavior when you run the generated code.
You verify this by running the test harness. You update the test harness to

2-33

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

include the rtwdemo_PCG_Eval_P2 model. That change is the only one made
to the test harness.

Note The following procedure requires a Stateflow license.

1 Open the test harness by entering rtwdemo_PCGEvalHarness at the
MATLAB command line.

2 Right-click the Unit_Under_TestModel block and selectModelReference
Parameters.

3 Set Model name (without the .mdl extension) to:
rtwdemo_PCG_Eval_P2.

4 Click OK.

5 Simulate the test harness.

The resulting plot shows that the difference between the golden and
simulated versions of the model remains zero.

2-34

Configuring the Data Interface

6 Close the rtwdemo_PCGEvalHarness model.

Viewing Data Objects in Generated Code
View the rtwdemo_PCG_Eval_P2.c file to see how using data objects changes
the generated code.

1 Generate code from the rtwdemo_PCG_Eval_P2 model.

2 View the generated code for the model step function in
rtwdemo_PCG_Eval_P2.c, which is in the generated code subdirectory for
this model.

The following code for the rtwdemo_PCG_EVAL_P1_step function is
equivalent to rtwdemo_PCG_Eval_P2_step function before the use of
data objects. The highlighted portions indicate parameter and structure
variables that user defined data objects replace.

2-35

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

/* Model step function */

void rtwdemo_PCG_Eval_P1_step(void)

{

{

real_T rtb_Sum3;

real_T rtb_Saturation1;

/* Sum: '<S2>/Sum2' incorporates:

* Inport: '<Root>/fbk_1'

* Inport: '<Root>/pos_rqst'

*/

rtb_Sum3 = rtwdemo_PCG_Eval_P1_U.pos_rqst - rtwdemo_PCG_Eval_P1_U.fbk_1;

/* DiscreteIntegrator: '<S2>/Discrete_Time_Integrator1' incorporates:

* Gain: '<S2>/Int Gain1'

* Lookup: '<S2>/Integral Gain Shape'

* Product: '<S2>/Product3'

*/

rtwdemo_PCG_Eval_P1_B.Discrete_Time_Integrator1 = -0.03 * rt_Lookup((real_T *)

(&rtwdemo_PCG_Eval_P1_ConstP.pooled4[0]), 9, rtb_Sum3, (real_T *)

(&rtwdemo_PCG_Eval_P1_ConstP.pooled5[0])) * rtb_Sum3 * 0.001 +

rtwdemo_PCG_Eval_P1_DWork.Discrete_Time_Integrator1_DSTAT;

...

The following code for the rtwdemo_PCG_Eval_P2_step
function shows that most of the Real-Time Workshop data
structures have been replaced with user-defined data objects
(highlighted). The local variable rtb_Sum3 and the state variable
rtwdemo_PCG_Eval_P2_DWork.Discrete_Time_Integrator1_DSAT use
Real-Time Workshop data structures.

/* Model step function */

void rtwdemo_PCG_Eval_P2_step(void)

{

{

real_T rtb_Sum3;

/* Sum: '<S2>/Sum2' incorporates:

* Inport: '<Root>/fbk_1'

* Inport: '<Root>/pos_rqst'

*/

2-36

Configuring the Data Interface

rtb_Sum3 = (*pos_rqst) - fbk_1;

/* DiscreteIntegrator: '<S2>/Discrete_Time_Integrator1' incorporates:

* Gain: '<S2>/Int_Gain1'

* Lookup: '<S2>/Integral Gain Shape'

* Product: '<S2>/Product3'

*/

rtwdemo_PCG_Eval_P2_B.Discrete_Time_Integrator1 = I_Gain * rt_Lookup((real_T*)

(&(I_InErrMap[0])), 9, rtb_Sum3, (real_T *)

(&(I_OutMap[0]))) * rtb_Sum3 *

0.001 + rtwdemo_PCG_Eval_P2_DWork.Discrete_Time_Integrator1_DSTAT;

...

3 Close the rtwdemo_PCG_eval_P2 demo model.

The following table lists the files that the code generator creates:

Files Generated for rtwdemo_PCG_Eval_P2

File Definition Notes

rtwdemo_PCG_Eval_P2.c Provides step and
initialization function

Uses the defined data objects

eval_data.c Assigns values to the defined
parameters

Has the file name specifically
defined

eval_data.h Provides extern definitions to
the defined parameters

Has the file name specifically
defined

ert_main.c Provides scheduling
functions

No change

rtwdemo_PCG_Eval_P2.h Defines data structures Using data objects shifted
some parameters out of this
file into user_data.h

PCG_Eval_p2_private.h Defines private (local) data
for the generated functions

Objects now defined in
eval_data were removed

2-37

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Files Generated for rtwdemo_PCG_Eval_P2 (Continued)

File Definition Notes

rtwdemo_PCG_Eval_P2_types.h Defines the model data
structure

No change

rtwtypes.h Provides mapping to data
types defined by Real-Time
Workshop software

Used for integration with
external systems

Managing Data
Data objects exist in the MATLAB base workspace, in a separate file from the
model. To save the data manually, enter save at the MATLAB command line.

The separation of data from the model provides many benefits:

• One model, multiple data sets:

- Use of different data types to change the targeted hardware (for example,
for floating-point and fixed-point targets)

- Use of different parameter values to change the behavior of the
control algorithm (for example, for reusable components with different
calibration values)

• Multiple models, one data set:

- Sharing of data between Simulink models in a system

- Sharing of data between projects (for example, transmission, engine, and
wheel controllers might all use the same CAN message data set)

Topics for Further Study

• “Working with Data” in the Simulink documentation

• “Creating and Using Custom Storage Classes” in the Real-Time Workshop
Embedded Coder documentation

• “Managing Placement of Data Definitions and Declarations” in the
Real-Time Workshop Embedded Coder documentation

2-38

Partitioning Functions in the Generated Code

Partitioning Functions in the Generated Code

In this section...

“Introduction” on page 2-39

“About Atomic and Virtual Subsystems” on page 2-39

“Viewing Changes in the Model Architecture” on page 2-40

“Controlling Function Location and File Placement in Generated Code”
on page 2-41

“Understanding Reentrant Code” on page 2-42

“Using a Mask to Pass Parameters into a Library Subsystem” on page 2-43

“Generating Code from an Atomic Subsystem” on page 2-44

“Generating Code: Full Model vs. Exported Functions” on page 2-45

“Effect of Execution Order on Simulation Results” on page 2-47

“Topics for Further Study” on page 2-48

Introduction
This tutorial shows how to associate subsystems in the model with specific
function names and files. You examine:

• How to specify function and file names in generated code

• Parts of generated code that you must have for integration

• How to generate code for atomic subsystems

• Data that you must have to execute a generated function

About Atomic and Virtual Subsystems
The models in “Understanding the Demo Model” on page 2-5 and “Configuring
the Data Interface” on page 2-24 use virtual subsystems. Virtual subsystems
visually organize blocks but have no effect on the behavior of the model.
Atomic subsystems evaluate all included blocks as a unit. In addition, atomic
subsystems allow you to specify additional function partitioning information.
Atomic subsystems display graphically with a bold border.

2-39

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Viewing Changes in the Model Architecture
This section shows you how to replace the virtual subsystems in the model
with function-call subsystems. Function-call subsystems:

• Are always atomic subsystems

• Allow the direct control of subsystem execution order

• Are associated with a function-call signal

• Are executed when the function-call signal is triggered

You might have to exert direct control over execution order if you intend the
model to match an existing system with a specific execution order.

The following figure of the rtwdemo_PCG_Eval_P3model identifies function-call
subsystems as PI_ctrl_1, PI_ctrl_2, and Pos_Command_Arbitration.

The Execution_Order_Control subsystem has been added to the model. It
is a Stateflow chart that models the calling functionality of a scheduler. It

2-40

Partitioning Functions in the Generated Code

controls the execution order of the function-call subsystems. Later, this
tutorial examines how changing execution order can change the simulation
results.

Four signal conversion blocks were added to the outports for the PI controllers
to make the functions reentrant.

Controlling Function Location and File Placement in
Generated Code
In “Understanding the Demo Model” on page 2-5 and “Configuring the Data
Interface” on page 2-24, Real-Time Workshop software generates a single
model_step function that contains all the control algorithm code. However,
many applications require a greater level of control over the location of
functions in the generated code. By using atomic subsystems, you can specify
multiple functions within a single model. You specify this information by
modifying subsystem parameters, shown in the following figure.

Parameter What the Parameter Does

Treat as
atomic unit

Enables other submenus. This parameter is automatically
selected and grayed out for atomic subsystems.

Sample time Specifies a sample time. Not present for function-call
subsystems.

Depends on setting, as follows.

Auto: Real-Time Workshop software determines how
the subsystem appears in the generated code. This is the
default.

Inline: Real-Time Workshop software places the
subsystem code inline with the rest of the model code.

Function: Real-Time Workshop software generates the
code for the subsystem as a function.

Real-Time
Workshop
system code

Reusable function: Real-Time Workshop software
generates a reusable function from the subsystem. Passes
all input and output into the function by argument or by
reference. Does not pass global variables into the function.

2-41

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Parameter What the Parameter Does

If you select Function or Reusable function, function
name options are enabled as follows.

Auto: Real-Time Workshop software determines the
function.

Use subsystem name: Base the function name on the
subsystem name.

Real-Time
Workshop
function
name
options

User Specified: You specify a unique file name.

If you select Function or Reusable function, file name
options are enabled as follows.

Auto: Real-Time Workshop software generates the
function code within the generated code from the parent
system or, if the parent of the subsystem is the model
itself, within the model.c file.

Use subsystem name: Real-Time Workshop software
generates a separate file and names it with the name of the
subsystem or library block.

Use function name: Real-Time Workshop software
generates a separate file and names it with the function
name specified for Real-Time Workshop function name
options.

Real-Time
Workshop
file name
options

User Specified: You specify a unique file name.

Function
with
separate
data

Enabled when you set Real-Time Workshop system
code to Function. If selected, Real-Time Workshop
Embedded Coder software generates subsystem function
code in which the internal data for an atomic subsystem
is separated from its parent model and is owned by the
subsystem.

Understanding Reentrant Code
Real-Time Workshop Embedded Coder software supports reentrant code.
Reentrant code is a reusable programming routine that multiple programs
can use simultaneously. Operating systems and other system software
that uses multithreading to handle concurrent events use reentrant code.

2-42

Partitioning Functions in the Generated Code

Reentrant code does not maintain state data: no persistent variables are in
the function. Calling programs maintain their state variables and pass them
into the function. Any number of users or processes can share one copy of
a reentrant routine.

To generate reentrant code, you must first specify the subsystem as a
candidate for reuse by specifying the subsystem parameters in the Function
Block Parameters dialog box.

In some cases, the configuration of the model prevents Real-Time Workshop
software from generating reusable code. Common issues that prevent the
generation of reentrant code and corresponding solutions follow.

Cause Solution

Use of global data
on the outport of the
subsystem

Add a Signal Conversion block between the subsystem
and the signal definition.

Passing data into
the system as
pointers

In Model Explorer, select the
Configuration > Model Referencing > Pass
scalar root inputs by value check box.

Use of global
data inside the
subsystem

Use a port to pass the global data in and out of the
subsystem.

Using a Mask to Pass Parameters into a Library
Subsystem
Subsystem masks enable Simulink software to define subsystem parameters
outside the scope of a library block. By changing the parameter value at the
top of the library, the same library is usable with multiple sets of parameters
within the same model.

When a subsystem is reusable and masked, Real-Time Workshop software
passes the masked parameters into the reentrant code as arguments.
Real-Time Workshop software fully supports the use of data objects in masks.
The data objects are used in the generated code.

2-43

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

In the rtwdemo_PCG_Eval_P3 model, the PI_ctrl_1 and PI_ctrl_2
subsystems are masked. The value of the P and I gains are set in the
subsystem Mask Parameters dialog box, shown in the following figure.
Simulink creates two new data objects: P_Gain_2 and I_Gain_2.

Generating Code from an Atomic Subsystem
In “Understanding the Demo Model” on page 2-5 and “Configuring the Data
Interface” on page 2-24, the Real-Time Workshop software generates code at
the model root level. In addition to building at the system level, it is possible
to build at the subsystem level

You start a subsystem build from the right-click context menu. Three
different options are available for a subsystem build.

Build Option What the Option Does

Build
Subsystem

Treats the subsystem as a separate model. The full set of source C files and
header files are created for the subsystem. Does not support function-call
subsystems.

2-44

Partitioning Functions in the Generated Code

Build Option What the Option Does

Generate
S-Function

Generates C code for the subsystem and creates an S-function wrapper. You
can then simulate the code in the original Simulink model. Does not support
function-call subsystems.

Export
Functions

Generates C code without the scheduling code associated with the Build
Subsystem option. Export functions is required when building subsystems
that use triggers.

Generating Code: Full Model vs. Exported Functions
In this section, you compare the files generated for the full model build with
files generated for exported functions. This module also examines how the
masked data appears in the code.

1 Open rtwdemo_PCG_Eval_P3.

2 Generate code for the model.

The code generator creates code for the rtwdemo_PCG_Eval_P3 model.

3 Export a function for the PI_ctrl_1 subsystem:

a In the Model Editor, right-click PI_ctrl_1 and select Real-Time
Workshop > Export Functions.

The Build code for Subsystem: PI_ctrl_1 dialog box opens.

b Click the Build button.

Code is generated for PI_ctrl_1.

4 If you have a Stateflow license, export a function for the
Pos_Command_Arbitration chart:

a In the Model Editor, right-click Pos_Command_Arbitration and select
Real-Time Workshop > Export Functions.

The Build code for Subsystem: Pos_Command_Arbitration dialog
box opens.

b Click the Build button.

2-45

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Code is generated for Pos_Command_Arbitration.

5 Examine the generated code listed in the table by locating and opening the
files in the respective generated code subdirectories.

File Full Build PI_ctrl_1 Pos_Command_Arbitration
(requires Stateflow
license)

rtwdemo_PCG_Eval_P3.c Yes
Step function

No No

PI_ctrl_1.c No Yes
Trigger function

No

Pos_Command_Arbitration.c
(requires Stateflow license)

No No Yes
Init and Function

PI_Ctrl_Reusable.c Yes
Called by main

Yes
Called by
PI_ctrl_1

No

ert_main.c Yes Yes Yes

eval_data.c Yes* Yes* No
Eval data not used in
diagram

* The content of eval_data.c differs between the full model and export
function builds. The full model build includes all parameters that the
model uses while the export function contains only variables that the
subsystem uses.

Masked Data in the Generated Code
The code in rtwdemo_PCG_Eval_P3.c illustrates how data objects from
the mask (P_Gain and I_Gain) and P_Gain_2 and I_Gain_2 pass into the
reentrant code.

PI_Cntrl_Reusable((*pos_rqst), fbk_1, &rtwdemo_PCG_Eval_P3_B->PI_ctrl_1,

&rtwdemo_PCG_Eval_P3_DWork->PI_ctrl_1, I_Gain, P_Gain);

PI_Cntrl_Reusable((*pos_rqst), fbk_2, &rtwdemo_PCG_Eval_P3_B->PI_ctrl_2,

&rtwdemo_PCG_Eval_P3_DWork->PI_ctrl_2, I_Gain_2, P_Gain_2);

2-46

Partitioning Functions in the Generated Code

Effect of Execution Order on Simulation Results
Without explicit control, Simulink software sets the execution order of the
subsystems as:

1 PI_ctrl_1

2 PI_ctrl_2

3 Pos_Cmd_Arbitration

You use the test harness to see the effect of the execution order on
the simulation results. The Execution_Order_Control subsystem is a
configurable subsystem with two configurations that change the execution
order of the subsystems.

Note The following procedure requires a Stateflow license.

Change the execution order as follows:

1 In the rtwdemo_PCG_Eval_P3 model, set the execution order to PI_ctrl_1,
PI_ctrl_2, Pos_cmd_Arbitration:

a Right-click the Execution_Order_Control subsystem.

b On the Block Choice menu, select
PI_1_then_PI_2_then_Pos_Cmd_Arb.

2 Save rtwdemo_PCG_Eval_P3.

3 Open the test harness, rtwdemo_PCGEvalHarness.

4 Right-click the Unit_Under_TestModel block and selectModelReference
Parameters.

5 Set Model name (without the .mdl extension) to:
rtwdemo_PCG_Eval_P3.

6 Click OK.

7 Run the test harness.

2-47

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

8 In rtwdemo_PCG_Eval_P3, change the execution order to
Pos_cmd_Arbitration_then_PI_1_then_PI_2.

9 Run the test harness again.

A slight variation exists in the output results depending on the order
of execution. The difference is most noticeable when the desired input
changes.

10 Close the rtwdemo_PCG_Eval_P3 model.

Topics for Further Study

• “Architecture Considerations” in the Real-Time Workshop documentation

2-48

Partitioning Functions in the Generated Code

• “Integrating External Code With Generated C and C++ Code” in the
Real-Time Workshop documentation

• “Exporting Function-Call Subsystems” in the Real-Time Workshop
Embedded Coder documentation

• “Controlling Generation of Function Prototypes” in the Real-Time
Workshop Embedded Coder documentation

• “Working with Block Masks” in the Simulink documentation

2-49

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Calling External C Functions from the Model and
Generated Code

In this section...

“Introduction” on page 2-50

“Including Preexisting C Functions in a Simulink Model” on page 2-50

“Creating a Block That Calls a C Function” on page 2-51

“Validating the External Code in the Simulink Environment” on page 2-52

“Validating the C Code as Part of the Simulink Model” on page 2-54

“Calling the C Function from the Generated Code” on page 2-55

“Topics for Further Study” on page 2-56

Introduction
This tutorial introduces the Legacy Code Tool as a method for calling external
functions. The Legacy Code Tool enables you to call the external function
from within the simulation and in the generated code.

In this tutorial, you examine:

• How to evaluate a C function as part of a Simulink model simulation

• How to call a C function from code that Real-Time Workshop software
generates

Including Preexisting C Functions in a Simulink Model
Simulink models are one part of Model-Based Design. For many applications,
a design also includes a set of C functions that you have created, tested, and
validated. The ability to integrate these functions easily into a Simulink
model and generated code is critical to using Simulink software in the controls
development process.

This section demonstrates how to create a custom Simulink block that calls
an existing C function. Once the block is part of the model, you can take
advantage of the simulation environment to test the system further.

2-50

Calling External C Functions from the Model and Generated Code

In “Creating a Block That Calls a C Function” on page 2-51, you replace the
Lookup Table blocks in the PI controllers with calls to an existing C function.
The function is defined in the files

matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/stage_4_files/SimpleTable.c

matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/stage_4_files/SimpleTable.h

Note matlabroot represents the name of your top-level MATLAB
installation directory.

Creating a Block That Calls a C Function
To specify a call to an existing C function, you use an S-Function block.
You can automate the process of creating the S-Function block by using the
Simulink Legacy Code Tool. Using this tool, you specify an interface for your
existing C function. The tool then uses that interface to automate creation of
an S-Function block.

Complete the steps below to create an S-Function block for an existing C
function SimpleTable.c.

1 Copy the SimpleTable.c and SimpleTable.h files to your working
directory.

2 Create an S-Function block that calls the specified function at each time
step during simulation:

a Create the function interface definition structure at the command line:

def=legacy_code('initialize')

The data structure def defines the function interface to the existing
C code.

b Populate the function interface definition structure by entering the
following commands:

def.OutputFcnSpec=['double y1 = SimpleTable(double u1,',...
'double p1[], double p2[], int16 p3)'];

def.HeaderFiles = {'SimpleTable.h'};
def.SourceFiles = {'SimpleTable.c'};

2-51

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

def.SFunctionName = 'SimpTableWrap';

c Create the S-function:

legacy_code('sfcn_cmex_generate',def)

d Compile the S-function:

legacy_code('compile',def)

e Create the S-Function block:

legacy_code('slblock_generate',def)

Simulink creates a new model that contains the SimpTableWrap block.

Tip Creating the S-Function block is a one-time task. Once the block
exists, you can reuse it in any model.

3 Save the model to your working directory as: s_fun_simptablewrap.mdl.

4 Create the TLC file for the S-Function block:

legacy_code('sfcn_tlc_generate',def);

The TLC file is the component of an S-function that specifies how Real-Time
Workshop software generates code for the block.

For more information on using the Legacy Code Tool, see “Integrating
Existing C Functions into Simulink Models with the Legacy Code Tool” in
the Simulink documentation.

Validating the External Code in the Simulink
Environment
When you integrate existing C code with a Simulink model, always validate
the results before using the code.

In this tutorial, you replace Lookup Table blocks with an existing C function.
To validate the replacement, you compare simulation results from the Lookup

2-52

Calling External C Functions from the Model and Generated Code

Table block with results from the new S-Function block you created in the
preceding section.

1 Open the validation model, rtwdemo_ValidateLegacyCodeVrsSim.

• The Sine Wave block produces output values from [-2 : 2].

• The input range of the lookup table is from [-1 : 1].

• The output from the lookup table is the absolute value of the input.

• The lookup table output clips the output at the input limits.

2 Run the validation model.

The following figure shows the validation results. The existing C code and
the Simulink table block provide the same output values.

2-53

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Validating the C Code as Part of the Simulink Model
After you validate the functionality of the existing C function code as a
standalone component, validate the S-function in the model. Use the test
harness model to complete the validation.

Note The following procedure requires a Stateflow license.

1 Open the test harness, rtwdemo_PCGEvalHarness.

1 Right-click the Unit_Under_TestModel block and selectModelReference
Parameters.

2 Set Model name (without the .mdl extension) to:
rtwdemo_PCG_Eval_P4.

3 Click OK.

2-54

Calling External C Functions from the Model and Generated Code

4 Run the test harness.

The simulation results match the expected golden values.

5 Close the rtwdemo_PCGEvalHarness model.

Calling the C Function from the Generated Code
Real-Time Workshop software uses the TLC file to process the S-Function
block like any other block in the system. Calls to the C code of the S-Function
block:

• Can use data objects

2-55

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

• Are subject to expression folding, an operation that combines multiple
computations into a single output calculation

1 Open the rtwdemo_PCG_Eval_P4 model.

2 Build the code for the model.

3 Examine the generated code (PI_Control_Reusable.c).

The generated code now calls the SimpleTable C function.

Before the integration, the generated code called rt_Lookup.

localB->Discrete_Time_Integrator1 = rtp_Masked_I_Gain * rt_Lookup((real_T *)

(&(I_InErrMap[0])), 9, rtb_Sum3, (real_T *)(&(I_OutMap[0]))) * rtb_Sum3 *

0.001 + localDW->Discrete_Time_Integrator1_DSTAT;

After the integration, the generated code calls the C function SimpleTable.

localB->Discrete_Time_Integrator1 = I_Gain * SimpleTable(rtb_Sum2,

(&(I_InErrMap[0])), (&(I_OutMap[0])), 9) * rtb_Sum2 * 0.001 +

localDW->Discrete_Time_Integrator1_DSTAT;

4 Close the rtwdemo_PCG_eval_P4 demo model.

Topics for Further Study

• “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” in the Simulink documentation

• “Integrating External Code With Generated C and C++ Code” in the
Real-Time Workshop documentation

2-56

Integrating the Generated Code into the External Environment

Integrating the Generated Code into the External
Environment

In this section...

“Introduction” on page 2-57

“Building and Collecting the Required Data and Files” on page 2-57

“Integrating the Generated Code into an Existing System” on page 2-58

“About the Integration Environment” on page 2-58

“Matching the System Interfaces” on page 2-60

“Matching Function-Call Interfaces” on page 2-62

“Building a Project in the Eclipse Environment” on page 2-63

“Topics for Further Study” on page 2-64

Introduction
This tutorial provides an overview of the external build process.

In this tutorial, you explore:

• How to collect files that you must have for building outside of the Simulink
environment

• How to interface with external variables and functions

Building and Collecting the Required Data and Files
The code that Real-Time Workshop software generates depends on support
files that The MathWorks provides. If you need to relocate generated code
to another development environment, such as a dedicated build system,
you must also relocate the required support files. You can automatically
collect all generated and necessary support files and package them in a zip
file by using the Real-Time Workshop packNGo utility. This utility uses
tools for customizing the build process after code generation, including a
buildinfo_data structure, and a packNGo function to find and package
all files that you need to build an executable image, including external
files you define in the Real-Time Workshop > Custom Code pane of the

2-57

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Configuration Parameters dialog box. The utility packages the files in
a standard zip file. The buildinfo MAT-file is saved automatically in the
directory model_ert_rtw.

1 Open the rtwdemo_PCG_Eval_P5 model.

2 Generate code for the model rtwdemo_PCG_Eval_P5.

The model is configured to run packNGo automatically after code generation.

3 To generate the zip file manually, do these steps at the MATLAB command
line:

a Load the buildInfo.mat file (located in the
rtwdemo_PCG_Eval_P5_ert_rtw subdirectory).

b Enter the packNGo(buildInfo) command.

The number of files in the zip file depends on the version of Real-Time
Workshop Embedded Coder software and the configuration of the model you
use. The compiler does not require all of the files in the zip file. The compiled
executable size (RAM/ROM) is dependent on the link process. You must
configure the linker to include only required object files.

Integrating the Generated Code into an Existing
System
This section covers tasks required to integrate the generated code into an
existing code base. For this evaluation, you use the Eclipse Integrated
Development Environment (IDE) and Cygwin’s GCC compiler. The required
integration tasks are common to all integration environments.

About the Integration Environment
A full embedded controls system has multiple components, both hardware
and software. Control algorithms are just one type of component. The other
standard types of components include:

• An operating system (OS)

• A scheduling layer

2-58

Integrating the Generated Code into the External Environment

• Physical hardware I/O

• Low-level hardware device drivers

In general, Real-Time Workshop Embedded Coder software does not generate
code for any of these components. Instead, it generates interfaces that connect
with the components. The MathWorks provides hardware interface block
libraries for many common embedded controllers. For examples, see the
Target Support Package block libraries.

For this evaluation, the following main function demonstrates how you can
build a full system.

It is a simple main function that performs the basic actions to exercise the
code. It is not an example of an actual application main function.

Note The file is available at:

matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/stage_5_files/example_main.c

where matlabroot represents the name of your top-level MATLAB
installation directory.

int_T main(void)

{

/* Initialize model */

PC_Pos_Command_Arbitration_Init();/* Set up the data structures for chart*/

PCG_Eval_P5_Define_Throt_Param(); /* SubSystem: '<Root>/Define_Throt_Param' */

defineImportData(); /* Defines the memory and values of inputs */

do /* This is the "Schedule" loop.

Functions would be called based on a scheduling algorithm */

{

/* HARDWARE I/O */

/* Call control algorithms */

PI_Cntrl_Reusable((*pos_rqst),fbk_1,&PCG_Eval_P5_B.PI_ctrl_1,

&PCG_Eval_P5_DWork.PI_ctrl_1);

PI_Cntrl_Reusable((*pos_rqst),fbk_2,&PCG_Eval_P5_B.PI_ctrl_2,

2-59

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

&PCG_Eval_P5_DWork.PI_ctrl_2);

pos_cmd_one = PCG_Eval_P5_B.PI_ctrl_1.Saturation1;

pos_cmd_two = PCG_Eval_P5_B.PI_ctrl_2.Saturation1;

PCG_Eva_Pos_Command_Arbitration(pos_cmd_one, &Throt_Param, pos_cmd_two);

simulationLoop++;

} while (simulationLoop < 2);

return 0;

}

Functions of example_main.c include the following:

• Defines function interfaces (function prototypes)

• Includes required files for data definition

• Defines extern data

• Initializes data

• Calls simulated hardware

• Calls algorithmic functions

The order of execution of functions in example_main.c matches the order in
which the test harness and rtwdemo_PCG_Eval_P5.h call the subsystems.
If you change the order of execution in example_main.c, results from the
executable image differ from simulation results.

Matching the System Interfaces
Integration requires matching both the Data and Function interfaces of
the generated code and the existing system code. In this example, the
example_main.c file defines the data through #includes and calls the
functions from the generated code.

Specifying Input Data
The system has three input signals: pos_rqst, fbk_1, and fbk_2. The two
feedback signals are imported externs and the position signal is an imported
extern pointer. Because of how the signals are defined, Real-Time Workshop

2-60

Integrating the Generated Code into the External Environment

software does not create variables for them. Instead, the signal variables are
defined in a file that is external to the MATLAB environment.

For the tutorial, the defineImportedData.c file, a simple C stub, defines the
signal variables. The generated code has access to the data from the extern
definitions in the rtwdemo_PCG_Eval_P5_Private.h file. In a real system, the
data would come from other software components or from hardware devices.

1 Open matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/-
stage_5_files/defineImportedData.c:

/* Define imported data */
#include "rtwtypes.h"
real_T fbk_1;
real_T fbk_2;
real_T dummy_pos_value = 10.0;
real_T *pos_rqst;
void defineImportData(void)
{
pos_rqst = &dummy_pos_value;

}

2 In your working directory, open rtwdemo_PCG_Eval_P5_private.h:

/* Imported (extern) block signals */
extern real_T fbk_1; /* '<Root>/fbk_1' */
extern real_T fbk_2; /* '<Root>/fbk_2' */

/* Imported (extern) pointer block signals */
extern real_T *pos_rqst; /* '<Root>/pos_rqst' */

Specifying Output Data
The system does not require you to do anything with the output data.
However, you can access the data by referring to the rtwdemo_PCG_Eval_P5.h
file.

Open rtwdemo_PCG_Eval_P5.h.

The “Testing the Generated Code” on page 2-65 section shows how to save
the output data to a standard log file.

2-61

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Accessing Additional Data
Real-Time Workshop Embedded Coder software creates several data
structures during the code generation process although this tutorial does not
require access to these structures. Data elements include:

• Block state values (integrator, transfer functions)

• Local parameters

• Time

The following table lists the most common Real-Time Workshop data
structures. Depending on the configuration of the model, some or
all of these structures appear in the generated code. In this tutorial,
rtwdemo_PCG_Eval_P5.h file declares the data.

Data Type Data Name Data Purpose

Constants model_cP Constant parameters

Constants model_cB Constant block I/O

Output model_U Root and atomic
subsystem input

Output model_Y Root and atomic
subsystem output

Internal data model_B Value of block output

Internal data model_D State information
vectors

Internal data model_M Time and other system
level data

Internal data model_Zero Zero-crossings

Parameters model_P Parameters

Matching Function-Call Interfaces
By default, the Real-Time Workshop software generates functions that have a
void Func(void) interface. If you configure the model or atomic subsystem
as reentrant code, the Real-Time Workshop software creates a more complex

2-62

Integrating the Generated Code into the External Environment

function prototype. As shown below, the example_main function is configured
to call the functions with the correct input arguments.

rtwdemo_PCG_Eval_P5_B.sf_Pos_Command_Arbitration);

((*pos_rqst),fbk_1,&rtwdemo_PCG_Eval_P5_B.PI_ctrl_1,

&rtwdemo_PCG_Eval_P5_DWork.PI_ctrl_1);

PI_Cntrl_Reusable((*pos_rqst),fbk_2,&rtwdemo_PCG_Eval_P5_B.PI_ctrl_2,

&rtwdemo_PCG_Eval_P5_DWork.PI_ctrl_2);

pos_cmd_one = rtwdemo_PCG_Eval_P5_B.PI_ctrl_1.Saturation1;

pos_cmd_two = rtwdemo_PCG_Eval_P5_B.PI_ctrl_2.Saturation1;

rtwdemo_Pos_Command_Arbitration(pos_cmd_one, &Throt_Param, pos_cmd_two,

&rtwdemo_PCG_Eval_P5_B.sf_Pos_Command_Arbitration);

Calls to the PI_Cntrl_Reusable function use a mixture of user-defined
variables and Real-Time Workshop structures. The Real-Time Workshop
build process defines structures in rtwdemo_PCG_Eval_P5.h. The preceding
code fragment also shows how the structures map onto user-defined variables.

Building a Project in the Eclipse Environment
This tutorial uses the Eclipse IDE to build the embedded system.

1 Create a build directory (Eclipse_Build_P5).

Note If you have not generated code for the model, or the zip file does not
exist, complete the steps in “Building and Collecting the Required Data and
Files” on page 2-57 before continuing to the next step.

2 Unzip the file rtwdemo_PCG_Eval_P5.zip into your build directory.

3 Delete the following files, which example_main.c replaces:

• rtwdemo_PCG_Eval_P5.c

• ert_main.c

• rt_logging.c

2-63

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

4 Follow the link for instructions on Appendix A, “Installing and Using an
IDE for the Integration and Testing Tutorials (Optional)”.

You can use the Eclipse debugger to step through and evaluate the
execution behavior of the generated C code. “Testing the Generated Code”
on page 2-65 includes an example on how to exercise the model with input
data.

5 Close the rtwdemo_PCG_eval_P5 demo model.

Topics for Further Study
“Relocating Code to Another Development Environment”

2-64

Testing the Generated Code

Testing the Generated Code

In this section...

“Introduction” on page 2-65

“Methods for Validating Generated Code” on page 2-65

“Reusing Test Data: Test Vector Import/Export” on page 2-67

“Testing via Software-in-the-Loop (S-Functions)” on page 2-68

“Configuring the System for Testing via Test Vector Import/Export” on
page 2-70

“Testing with Test Vector Import/Export Using the Eclipse Environment”
on page 2-71

“Testing via Processor-in-the-Loop (PIL)” on page 2-72

Introduction
This tutorial shows two approaches for validating the generated code: the use
of system-level S-functions and running code in an external environment.

In this tutorial, you examine:

• Different methods available for testing generated code

• How to test generated code in the Simulink environment

• How to test generated code outside of the Simulink environment

Methods for Validating Generated Code
Simulink software supports multiple system-testing methods for validating
the behavior of generated code.

2-65

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Test
Method

What the
Method Does

Advantages Disadvantages

Microsoft
Windows
run-time
executable

Generate
a Windows
executable and
run the executable
from the command
prompt.

Easy to create.

Can use C
debugger to
evaluate code.

Emulates only
part of the target
hardware

Software
in the loop
(SIL)

Use an S-function
wrapper to include
the generated
code back into the
Simulink model.

Easy to create

Allows you to
reuse the Simulink
test environment.

Can use C
debugger to
evaluate code.

Emulates only
part of the target
hardware

Processor
in the loop
(PIL)

Download code
to a target
processor and
communicate with
it from Simulink.
See “How PIL
SimulationWorks”
in the Real-Time
Workshop
Embedded Coder
documentation.

Allows you to
reuse the Simulink
test environment.

Can use C
debugger with
the simulation.

Actual processor is
used.

Requires
additional steps
to set up test
environment.

On-target
rapid
prototyping

Run generated
code on the target
processor as part
of the full system.

Can determine
actual hardware
constraints.

Allows testing of
component within
the full system.

Processor runs in
real time.

Requires
hardware.

Requires
additional steps
to set up test
environment.

2-66

Testing the Generated Code

Reusing Test Data: Test Vector Import/Export
When the unit under test is in the Simulink environment, you can easily
reuse test data. However, test data can be reused outside of the Simulink
environment. To accomplish this task:

• Save the Simulink data into a file.

• Format the data in a way that the system code can access.

• Read the data file as part of the system code procedures.

Likewise, you can reuse external environment data in the Simulink test
environment if you save the data from the external environment in a format
that MATLAB software can read. In this example, the hardwareInputs.c file
contains the output data from the Signal Builder block in the test harness
model.

2-67

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Testing via Software-in-the-Loop (S-Functions)

Creating the S-Function
Simulink software can automatically create an S-function wrapper for
generated C code. You can enable this option from Model Explorer:

1 Open the rtwdemo_PCG_Eval_P6 model.

2 In Model Explorer, select the Configuration > Real-Time Workshop >
Interface pane.

3 Select the Create Simulink (S-Function) block check box.

4 In the Real-Time Workshop > General pane, make sure the Generate
code only check box is cleared.

5 Build the code for the model.

2-68

Testing the Generated Code

Building the model creates an S-function.

After you create the S-function, you can save it as a model, and then use it
with the test harness.

Running the S-Function
In the following tutorial, the demo model is a version of the test harness with
a modification: the Model block is replaced with the automatically generated
S-function. Model blocks and the automatically generated S-function model
are based on the same technological infrastructure. As a result, Model blocks
cannot include automatically generated S-functions. However, Model blocks
can include standard S-functions.

1 Open the test harness, rtwdemo_PCGEvalHarnessSFun.

Notice that the model uses the S-function.

2 Run the test harness.

Again, the results from running the generated code are the same as the
simulation results.

2-69

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Topics for Further Study
“Generating S-Function Wrappers”

Configuring the System for Testing via Test Vector
Import/Export
This section extends the integration example in “Integrating the Generated
Code into the External Environment” on page 2-57. In this case,
example_main.c has simulated hardware I/O.

Open matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/-
stage_6_files/example_main.c.

2-70

Testing the Generated Code

The augmented example_main.c file now has the following order of execution:

1 Initialize data (one time)

while < endTime

2 Read simulated hardware inputs

3 PI_cnrl_1

4 PI_ctrl_2

5 Pos_Command_Arbitration

6 Write simulated hardware outputs:

end while

Two functions, plant and hardwareInputs.

File Name Function Signature Comments

Plant.c void Plant(void) Code generated from the plant section of
the test harness. Simulates the throttle
body response to throttle commands.

HardwareInputs.c void hardwareInputs(void) Provides the pos_req signal and adds
noise from the Input_Signal_Scaling
subsystems into the plant feedback
signal.

The hand-coded function, WriteDataForEval.c provides data logging. The
function executes and writes test data to the file, PCG_Eval_ExternSimData.m
once the test is complete. You can load the M-file into the MATLAB
environment and compare it to the simulated data.

Testing with Test Vector Import/Export Using the
Eclipse Environment
This tutorial uses the Eclipse Integrated Development Environment (IDE)
debugger to build the embedded system.

2-71

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

1 Before building an executable in the Eclipse environment, regenerate the
code without the S-function interface.

a Open the rtwdemo_PCG_Eval_P6 model.

b In Model Explorer, open the Configuration > Real-Time
Workshop > Interface pane.

c Make sure the Create Simulink (S-Function) block check box is
cleared.

d Build the model.

2 Create a build directory (Eclipse_Build_P6).

3 Unzip the rtwdemo_PCG_Eval_P6.zip file into your build directory.

4 Delete these files, which example_main.c replaces:

• rtwdemo_PCG_Eval_P6.c

• ert_main.c

• rt_logging.c

5 Follow the link for instructions on Appendix A, “Installing and Using an
IDE for the Integration and Testing Tutorials (Optional)”.

Running the control code in Eclipse generates the eclipseData.m file. The
writeDataForEval.c file generated this file.

6 Plot the Eclipse results.

Compare the data from the Eclipse run and the standard test harness.

7 Close the rtwdemo_PCG_eval_P6 demo model.

Testing via Processor-in-the-Loop (PIL)
See “Verifying Compiled Object Code with Processor-in-the-Loop Simulation”
in the Real-Time Workshop Embedded Coder documentation for information,
instructions, and demos.

2-72

Evaluating the Generated Code

Evaluating the Generated Code

In this section...

“Introduction” on page 2-73

“Evaluating Code” on page 2-73

“About the Compiler Used” on page 2-74

“Viewing the Code Metrics” on page 2-74

“About the Build Option Configurations” on page 2-74

“Configuration 1: Reusable Functions, Data Type Double” on page 2-75

“Configuration 2: Reusable Functions, Data Type Single” on page 2-76

“Configuration 3: Nonreusable Functions, Data Type Single” on page 2-77

Introduction
This tutorial reviews the build characteristics of the generated code. It also
provides RAM/ROM data for several model configurations.

In this tutorial, you explore how different configurations affect the RAM/ROM
metric.

Evaluating Code
Generated code efficiency is based on two primary metrics: execution speed
and memory usage. Often, though not always, faster execution requires more
memory. Memory usage in ROM (read-only memory) and RAM (random
access memory) presents tradeoffs:

• Accessing data from RAM is faster than accessing ROM.

• Systems store executables and data using ROM because RAM does not
maintain data between power cycles.

This section shows memory requirements divided into function and data
components. Execution speed is not evaluated.

2-73

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

About the Compiler Used
The Freescale™ CodeWarrior® is used in this evaluation.

Compiler Version Target Processor

Freescale CodeWarrior v5.5.1.1430 Power PC 565

Viewing the Code Metrics
As described in “Integrating the Generated Code into the External
Environment” on page 2-57 and “Testing the Generated Code” on page 2-65,
the generated code might require the use of utility functions. The utility
functions have a fixed overhead; their memory requirements is a one-time
cost. Because of this, the data in this module shows memory usage for:

• Algorithms: The C code generated from the Simulink diagrams and the
data definition functions

• Utilities: Functions that are part of the Real-Time Workshop library source

• Full: The sum of both the Algorithm and Utilities

About the Build Option Configurations
The same configuration options are used in all three evaluations. CodeWarrior
is configured to minimize memory usage and apply all allowed optimizations.

2-74

Evaluating the Generated Code

Configuration 1: Reusable Functions, Data Type
Double

• Source files:
matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/
CodeMetricFiles/PCG_Eval_CodeMetrics_1

• Data Type: All doubles

• Included Data: All data required for the build is in the project (including
data defined as extern: pos_rqst, fbk_1, and fbk_2)

• Main Function: A modified version of example_main from “Integrating
the Generated Code into the External Environment” on page 2-57

• Function-Call Method: Reusable functions for the PI controllers

2-75

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

Memory Usage

Usage Type Function (bytes) Data (bytes)

Full 1764 589

Algorithms 1172 549

Utilities 592 40

Configuration 2: Reusable Functions, Data Type
Single
In this configuration, the data types for the model were changed from the
default of double to single.

• Source files:
matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/
CodeMetricFiles/PCG_Eval_CodeMetrics_2

• Data Type: All singles

2-76

Evaluating the Generated Code

• Included Data: All data required for the build is in the project (including
data defined as extern: pos_rqst, fbk_1, and fbk_2)

• Main Function: A modified version of example_main from “Integrating
the Generated Code into the External Environment” on page 2-57

• Function-Call Method: Reusable functions for the PI controllers

Memory Usage

Usage Type Function (bytes) Data (bytes)

Full 1392 348

Algorithms 800 308

Utilities 592 40

Comparing the memory used by the algorithms in the first configuration to
the current configuration, there is a large drop in the data memory, from
549 bytes to 308 bytes or 56 percent. The function size also decreased from
1172 to 800 bytes, or 68 percent. Running the simulation with data type set
to single does not reduce the accuracy of the control algorithm. Therefore,
this is an acceptable design decision.

Configuration 3: Nonreusable Functions, Data Type
Single

• Source files:
matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/
CodeMetricFiles/PCG_Eval_CodeMetrics_3

• Data Type: All singles

• Included Data: All data required for the build is in the project (including
data defined as extern: pos_rqst, fbk_1, and fbk_2)

• Main Function: A modified version of example_main from “Integrating
the Generated Code into the External Environment” on page 2-57

• Function-Call Method: The function interface is void void. Data is
passed by global parameters.

2-77

2 Learning and Using Real-Time Workshop® Embedded Coder™ Software

The memory requirements for the third configuration are higher than
the second configuration. Had the data type been doubled, the memory
requirements would have been higher than the first configuration, as well.

Memory Usage

Usage Type Function (bytes) Data (bytes)

Full 1540 388

Algorithms 948 348

Utilities 592 40

2-78

A

Installing and Using an
IDE for the Integration and
Testing Tutorials (Optional)

• “Installing the Eclipse IDE and Cygwin Debugger” on page A-2

• “Integrating and Testing Code with the Eclipse IDE” on page A-4

A Installing and Using an IDE for the Integration and Testing Tutorials (Optional)

Installing the Eclipse IDE and Cygwin Debugger

In this section...

“Installing the Eclipse IDE” on page A-2

“Installing the Cygwin Debugger” on page A-3

Installing the Eclipse IDE

Note This section explains how to install the Eclipse IDE for C/C++
Developers and the Cygwin debugger for use with the integration and testing
tutorials. Alternatively, you can use another Integrated Development
Environment (IDE) or use equivalent tools such as command-line compilers
and makefiles.

1 Download the Eclipse IDE for C/C++ Developers from the Eclipse
Downloads web page (http://www.eclipse.org/downloads/).

2 Download the Eclipse C/C++ Development Tools (CDT) that is compatible
with the Eclipse IDE you downloaded in step 1 from the Eclipse CDT
Downloads page (http://www.eclipse.org/cdt/downloads.php). For example,
the Eclipse IDE 3.3 requires Eclipse CDT 4.0.

3 Unzip the downloaded Eclipse IDE zip file.

4 Create the directory c:\eclipse.

5 Copy the unzipped Eclipse IDE files to c:\eclipse.

6 Unzip the downloaded Eclipse CDT zip file.

7 Copy the contents of the directories features and plugins to the
corresponding directories in c:\eclipse.

8 Create a link to the executable file c:\eclipse\eclipse.exe on your
desktop.

A-2

Installing the Eclipse™ IDE and Cygwin™ Debugger

Installing the Cygwin Debugger

1 Download the Cygwin setup.exe file from the Cygwin home page
(http://www.cygwin.com).

2 Run the setup.exe file. A Cygwin Setup - Choose Installation Type dialog
appears.

3 As you follow the installation procedure:

• Select the option for installing over the Internet.

• Accept the default root directory c:\cygwin.

• Specify a local package directory. For example, specify
c:\cygwin\packages.

• Specify how you want to connect to the Internet.

• Choose a download site.

4 On the dialog for selecting packages, set the Devel category to Install by
clicking the selector icon .

5 Add the directory c:\cygwin\bin to your system Path variable. For
example, on a Windows XP system:

a Click Start > Settings > Control
Panel > System > Advanced > Environment Variables.

b Under System variables, select the Path variable and click Edit.

c Add c:\cygwin\bin to the variable value and click OK.

Note To use Cygwin, your build directory must be on your C drive and the
directory path cannot include any spaces.

A-3

A Installing and Using an IDE for the Integration and Testing Tutorials (Optional)

Integrating and Testing Code with the Eclipse IDE

In this section...

“Introducing Eclipse” on page A-4

“Defining a New C Project” on page A-5

“Configuring the Debugger” on page A-6

“Starting the Debugger” on page A-7

“Setting the Cygwin Path” on page A-7

“What the Eclipse Debugger Can Do” on page A-8

Introducing Eclipse
Eclipse (www.eclipse.org) is an integrated development environment for
developing and debugging embedded software. Cygwin (www.cygwin.com)
is an environment that is similar to the Linux environment, but runs on
Windows and includes the GCC compiler and debugger.

This section contains instructions for using the Eclipse IDE with Cygwin
tools to build, run, test, and debug projects that include code generated by
Real-Time Workshop Embedded Coder software, as described in “Integrating
the Generated Code into the External Environment” on page 2-57 and
“Testing the Generated Code” on page 2-65. Many other software packages
and tools also exist that can work with Real-Time Workshop Embedded Coder
software to perform similar tasks.

“Installing the Eclipse IDE and Cygwin Debugger” on page A-2 contains
instructions for installing Eclipse and Cygwin. Be sure you have installed
Eclipse and Cygwin, as explained in that section, before you proceed.

Note To use Cygwin, your build directory must be on your C drive and the
directory path cannot include any spaces.

A-4

http://www.eclipse.org/
http://www.cygwin.com/

Integrating and Testing Code with the Eclipse™ IDE

About Project Names and File Names Used in This Section
“Integrating the Generated Code into the External Environment” on page
2-57 and “Testing the Generated Code” on page 2-65 both use the instructions
in this section, but the project names and file names differ. Where you see ##
in a project name or file name, substitute:

• P5 if you are working in “Integrating the Generated Code into the External
Environment” on page 2-57

• P6 if you are working in“Testing the Generated Code” on page 2-65

Defining a New C Project

1 In Eclipse, choose File > New > Project. A New Project dialog box appears.

2 In the New Project dialog box,

a Expand C.

b Click C Project.

c Click Next.

A C Project dialog box appears.

3 In the C Project dialog box,

a Type the project name rtwdemo_PCG_Eval_## (where ## is P5 or P6)
in the Project name field.

b Specify the location of your build directory in the Location field, for
example C:\work\Eclipse_Projects\Eclipse_Build_P5.

c In the Project types selection box, select Makefile project. A list of
corresponding toolchains appears.

d Select toolchain Cygwin GCC .

e Click Next. A Select Configurations dialog box appears.

4 In the Select Configurations dialog box, click the Advanced settings
button. The Properties for configuration dialog box appears.

5 In the Properties for configuration dialog box,

A-5

A Installing and Using an IDE for the Integration and Testing Tutorials (Optional)

a Select C/C++ Build.

b Select Generate Makefiles automatically.

c Select the Behavior tab.

d Select Build on resource save (Auto build).

e Click Apply and OK.

The Properties for configuration dialog box closes.

6 In the Select Configurations dialog box, click Finish.

Configuring the Debugger

1 In Eclipse, choose Run > Open Debug Dialog. The Debug dialog box
appears.

2 Double-click C/C++ Local Application. A New_configuration entry
appears under C/C++ Local Application.

3 Type the name of your configuration (for example,
rtwdemos_PCG_Eval_P5_CygwinGCC) in the Name field.

4 Enter the name of your project (for example, rtwdemo_PCG_Eval_P5)
in the Project field. If you click Browse, a Project Section dialog box
appears. Select a project and click OK.

5 Enter the path for the location of your executable file (for
example, C:\Work\Eclipse_Projects\Eclipse_Build_P5\Cygwin
GCC\rtwdemo_PCG_Eval_P5.exe) in the C/C++ Application field. If you
click Browse, an Open dialog box appears. Navigate to and select your
executable file and click Open.

6 Click Apply. The configuration name you specified replaces
New_configuration under C/C++ Local Application.

Note Do not click Run.

7 Click Close.

A-6

Integrating and Testing Code with the Eclipse™ IDE

Starting the Debugger
To start the debugger,

1 In the main Eclipse window, select Run > Debug.

Tabbed debugger panes that display debugging information
and controls appear in the main Eclipse window. In addition,
a console window pointing to your executable file (for example,
C:\Work\Eclipse_Projects\Eclipse_Build_P5\Cygwin
GCC\rtwdemo_PCG_Eval_P5.exe) opens.

2 Specify the location of the project files. The Cygwin debugger creates a
virtual drive, /cygdrive/c/ during the build process. To run the debugger,
Eclipse needs to remap the drive or locate your project files. Once Eclipse
locates the first file, it automatically finds the remaining files. In the
Eclipse window, click Locate File.

For information on using the Edit Source Lookup Path button, see
“Setting the Cygwin Path” on page A-7

.

3 An Open dialog box appears. Navigate to the example_main.c file and click
Open. Your program opens in the context of the debugger.

Setting the Cygwin Path
The first time you run Eclipse, you will get an error related to the Cygwin
path.

A-7

A Installing and Using an IDE for the Integration and Testing Tutorials (Optional)

To provide the necessary path information,

1 Click Edit Source Lookup Path in the error message dialog box.

2 Click Add in the Edit Source Lookup Path dialog box.

The Add Source dialog box appears.

3 Select Path Mapping in the Add Source dialog box.

4 Click OK. The Edit Source Lookup Path dialog box appears.

5 In the Edit Source Lookup Path dialog box, select Path Mapping.

6 Click Edit. The Path Mappings dialog box appears.

7 In the Path Mappings dialog box, click Add.

8 In the Compilation path field, type \cygdrive\c\.

9 In the Local file system path field, type c:\.

10 Click OK.

What the Eclipse Debugger Can Do
Actions and commands available in the debugger include:

Action Command

Step into F5

Step over F6

Step out F7

Resume F8

Toggle break point Ctrl + Shift + B

A-8

	toc
	Getting Started with Real-Time Workshop Embedded Coder Software
	What You Need to Know to Use Real-Time Workshop Embedded Coder
	What You Can Accomplish Using Real-Time Workshop Technology
	How the Technology Can Fit Into Your Development Process
	Tools for Algorithm Development
	Target Environments
	Applications

	How You Can Apply the Technology to the V-Model for System Devel
	What Is the V-Model?
	Types of Simulation and Prototyping
	Types of In-the-Loop Testing for Verification and Validation

	Learning and Using Real-Time Workshop Embedded Coder Software
	Using the Tutorials
	Introduction
	Prerequisites
	Third-Party Software
	Setting Up the Tutorial Files

	Understanding the Demo Model
	Introduction
	Understanding the Functional Design of the Model
	Viewing the Top Model
	Viewing Subsystems
	Understanding the Simulation Testing Environment
	Running the Simulation Tests
	Viewing the Configuration Options for Code Generation
	Generating Code for the Model
	Examining the Generated Code
	Topics for Further Study

	Configuring the Data Interface
	Introduction
	Declaring Data
	Using Data Objects in Simulink Models and Stateflow Charts
	Adding New Data Objects
	Configuring Data Objects
	Controlling File Placement of Parameter Data
	Enabling Data Objects in Generated Code
	Effects of Simulation on Data Typing
	Viewing Data Objects in Generated Code
	Managing Data
	Topics for Further Study

	Partitioning Functions in the Generated Code
	Introduction
	About Atomic and Virtual Subsystems
	Viewing Changes in the Model Architecture
	Controlling Function Location and File Placement in Generated Co
	Understanding Reentrant Code
	Using a Mask to Pass Parameters into a Library Subsystem
	Generating Code from an Atomic Subsystem
	Generating Code: Full Model vs. Exported Functions
	Masked Data in the Generated Code

	Effect of Execution Order on Simulation Results
	Topics for Further Study

	Calling External C Functions from the Model and Generated Code
	Introduction
	Including Preexisting C Functions in a Simulink Model
	Creating a Block That Calls a C Function
	Validating the External Code in the Simulink Environment
	Validating the C Code as Part of the Simulink Model
	Calling the C Function from the Generated Code
	Topics for Further Study

	Integrating the Generated Code into the External Environment
	Introduction
	Building and Collecting the Required Data and Files
	Integrating the Generated Code into an Existing System
	About the Integration Environment
	Matching the System Interfaces
	Specifying Input Data
	Specifying Output Data
	Accessing Additional Data

	Matching Function-Call Interfaces
	Building a Project in the Eclipse Environment
	Topics for Further Study

	Testing the Generated Code
	Introduction
	Methods for Validating Generated Code
	Reusing Test Data: Test Vector Import/Export
	Testing via Software-in-the-Loop (S-Functions)
	Creating the S-Function
	Running the S-Function
	Topics for Further Study

	Configuring the System for Testing via Test Vector Import/Export
	Testing with Test Vector Import/Export Using the Eclipse Environ
	Testing via Processor-in-the-Loop (PIL)

	Evaluating the Generated Code
	Introduction
	Evaluating Code
	About the Compiler Used
	Viewing the Code Metrics
	About the Build Option Configurations
	Configuration 1: Reusable Functions, Data Type Double
	Configuration 2: Reusable Functions, Data Type Single
	Configuration 3: Nonreusable Functions, Data Type Single

	Installing and Using an IDE for the Integration and Testing Tuto
	Installing the Eclipse IDE and Cygwin Debugger
	Installing the Eclipse IDE
	Installing the Cygwin Debugger

	Integrating and Testing Code with the Eclipse IDE
	Introducing Eclipse
	About Project Names and File Names Used in This Section

	Defining a New C Project
	Configuring the Debugger
	Starting the Debugger
	Setting the Cygwin Path
	What the Eclipse Debugger Can Do

	tables
	Supported Data Types
	Supported Predefined Storage Classes
	Files Generated for rtwdemo_PCG_Eval_P2
	Memory Usage
	Memory Usage
	Memory Usage

